生命经纬知识库 >>所属分类 >> 植物学   

标签: 光合作用 叶绿体 光合色素 原初反应 电子传递 光合磷酸化 C3途径 C4途径 CAM途径

顶[1] 发表评论(44) 编辑词条

  光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。
  英文描述
  Photosynthesis is the conversion of energy from the Sun to chemical energy (sugars) by green plants. The "fuel" for ecosystems is energy from the Sun. Sunlight is captured by green plants during photosynthesis and stored as chemical energy in carbohydrate molecules. The energy then passes through the ecosystem from species to species when herbivores eat plants and carnivores eat the herbivores. And these interactions form food chains.
  传统定义
  植物利用阳光的能量,将二氧化碳转换成淀粉,以供植物及动物作为食物的来源。叶绿体由于是植物进行光合作用的地方,因此叶绿体可以说是阳光传递生命的媒介。
  (1)原理
  植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取。就是所谓的自养生物。对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。
  这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放氧气:
  CO2+H2O→(CH2O)+O2(在光下,叶绿体中)
  (2)注意事项
  上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。
  (3)光反应和暗反应(高中生物课本中称之为暗反应,也有些地方称之为碳反应)
  光合作用可分为光反应和暗反应两个步骤
  (4)光反应
  条件:光,色素,光反应酶
  场所:囊状结构薄膜上
  影响因素:光强度,水分供给
  植物光合作用的两个吸收峰
  叶绿素a,b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子,作为能量,将从水分子光解光程中得到电子不断传递,(能传递电子得仅有少数特殊状态下的叶绿素a)
  最后传递给辅酶NADP。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP带走。一分子NADP可携带两个氢离子。这个NADPH+H离子则在暗反应里面充当还原剂的作用。
  意义:1:光解水(又称水的光解),产生氧气。2:将光能转变成化学能,产生ATP,为暗反应提供能量。3:利用水光解的产物氢离子,合成NADPH+H离子,为暗反应提供还原剂【H】(还原氢)。
  (5)暗反应(碳反应)
  实质是一系列的酶促反应
  条件:无光也可,暗反应酶(但因为只有发生了光反应才能持续发生,所以不再称为暗反应)
  场所:叶绿体基质
  影响因素:温度,二氧化碳浓度
  过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3,C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。
  C3反应类型:植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与【H】及ATP提供的能量反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与暗反应。
  (6 )光暗反映的有关化学方程式
  H20→2H+ 1/2O2(水的光解)
  NADP+ + 2e- + H+ → NADPH(递氢)
  ADP+Pi→ATP (递能)
  CO2+C5化合物→C3化合物(二氧化碳的固定)
  C3化合物→(CH2O)+ C5化合物(有机物的生成或称为C3的还原)
  ATP→ADP+PI(耗能)
  能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)

目录

[显示全部]

光合作用的研究历史编辑本段回目录

  光合作用(photosynthesis)通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。地球上一年中通过光合作用约吸收2.0×1011t碳素(6400t/s),合成5×1011t有机物,同时将3.2×1021J的日光能转化为化学能,并释放出5.35×1011t氧气。光合作用是地球上规模最巨大的把太阳能转变为可贮存的化学能的过程,也是规模最巨大的将无机物合成有机物和从水中释放氧气的过程。自从有了光合作用,需氧生物才得以进化和发展。由于光合作用中氧的释放和积累而逐渐形成了大气表面的臭氧(O3)层,O3能吸收阳光中对生物有害的紫外辐射,使生物可从水中到陆地上生活和繁衍。光合作用是生物界获得能量、食物以及氧气的根本途径,所以光合作用被称为“地球上最重要的化学反应”。没有光合作用也就没有繁荣的生物世界。当今人类社会面临着日趋严峻的食物不足、能源危机、资源匮乏和环境恶化等问题,这些问题的解决无一不与植物的光合作用有着密切的关系。因此深入探讨光合作用的规律,揭示光合作用的机理,使之更好地为人类服务,愈加显得重要和迫切。   
一、光合作用总反应式的确定
  18世纪以前,人们都认为植物是从土壤中获得生长所需的全部元素的。1771年英国化学家普利斯特利(J.Priestley)发现将薄荷枝条和燃烧的蜡烛放在一个密闭的钟罩里,蜡烛不易熄灭;将小鼠与植物放在同一钟罩里,小鼠也不易窒息死亡。因此,他提出植物可以“净化”空气,现在就把1771年定为发现光合作用的年代。以后又经许多人的研究(见绪论),到了19世纪末,人们写出了如下的光合作用的总反应式:
  6CO2+6H2O→ C6H12O6+6O2
  从(4-1)式中可以看出:光合作用本质上是一个氧化还原过程。其中CO2是氧化剂,CO2中的碳是氧化态的,而C6H12O6中的碳是相对还原态的,CO2被还原到糖的水平。H2O 是还原剂,作为CO2还原的氢的供体。(4-1)式用了几十年,后来又把它简化成下式:
  CO2+H2O→(CH2O)+O2 (△G°′=4.78×105J)
  上式用(CH2O)表示一个糖类分子的基本单位,比较简洁。用叶绿体代替绿色植物,说明叶绿体是进行光合作用的场所。由于葡萄糖燃烧时释放2870 kJ·mol-1的能量,因而每固定1mol CO2(即12g碳)就意味着转化和贮存了约478kJ的能量。
  应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O2是来自CO2还是H2O。很多年来,人们一直以为光能将CO2分解成O2和C,C与H2O 结合成(C H2O ),然而以下三方面研究证实了光合作用释放的O2来自于H2O 。
  1.细菌光合作用 能进行光合作用的细菌称之为光合细菌(photosynthetic bacteria)。光合细菌包括蓝细菌、紫细菌和绿细菌等。其中蓝细菌的光合过程与真核生物相似,紫细菌和绿细菌则不能分解水而需利用有机物或还原的硫化物等作为还原剂。例如:紫色硫细菌(purple-sulfur bacteria)和绿色硫细菌(green-sulfur bacteria)利用H2S为氢供体,在光下同化CO2:
  CO2+2H2S→(CH2O)+2S+H2O
  光合细菌在光下同化CO2而没有O2的释放。因此,细菌光合作用是指光合细菌利用光能,以某些无机物或有机物作供氢体,将CO2还原成有机物的过程。
  1931年微生物学家尼尔(C.B.Van Niel)将细菌光合作用与绿色植物的光合作用加以比较,提出了以下光合作用的通式:
  CO2+2H2A→(CH2O)+2A+H2O

  这里的H2A代表一种还原剂,可以是H2S、有机酸等,对绿色植物而言,H2A就是H2O,2A就是O2。绿色植物光合作用中的最初光化学反应是把水分解成氧化剂(OH)与还原剂(H)。还原剂(H)可以把CO2还原成有机物质;氧化剂(OH)则会通过放出O2而重新形成H2O。
  绿色植物和光合细菌都能利用光能将CO2合成有机物,它们是光养生物。从广义上讲,所谓光合作用,是指光养生物利用光能把CO2合成有机物的过程。
  2.希尔反应 1939年英国剑桥大学的希尔(Robert.Hill)发现在分离的叶绿体(实际是被膜破裂的叶绿体)悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气:
  4Fe3++2H2O→4Fe2+ +4H++O2
  这个反应称为希尔反应(Hill reaction)。其中的电子受体被称为希尔氧化剂(Hill oxidant),铁氰化钾、草酸铁、多种醌、醛及有机染料都可作为希尔氧化剂。希尔不但证明了给叶绿体照光可使水分解放氧,氧的释放与CO2还原是两个不同的过程,而且也是第一个用离体的叶绿体做试验,把对光合作用的研究深入到细胞器水平,为光合作用研究开创了新的途径。
  以后发现生物中重要的氢载体NADP+也可以作为生理性的希尔氧化剂,从而使得希尔反应的生理意义得到了进一步肯定。在完整的叶绿体中NADP+作为从
  H2O到CO2的中间电子载体,其反应式可写为:
  2NADP++2H2O→2NADPH+2H++O2
  CO2也可看作为一种生理性的希尔氧化剂,因为向完整的叶绿体悬浮液中充入CO2或加入能产生CO2的试剂如NaHCO3,照光时叶绿体能发生放氧反应。
  3.18O的研究 更为直接的证据是标记同位素的实验。1940年美国科学家鲁宾(S.Ruben)和卡门(M.D.Kamen)等用氧的稳定同位素18O标记H2O或CO2进行光合作用的实验,发现当标记物为H218O时,释放的是18O2,而标记物为C18O2时,在短期内释放的则是O2。这清楚地指出光合作用中释放的O2来自于 H2O。
  CO2+2 H218O→(CH2O)+ 18O2+H2O
  为了把CO2中的氧和H2O中的氧在形式上加以区别,表明光合作用中释放的O2全来自于H2O,而CO2中的一个O又被还原成H2O,因此,可用下式作为光合作用的总反应式。
  CO2+2H2O →(C H2O )+ O2+2 H2O 
二、光反应和暗反应
  光合作用需要光,然而是否其中每一步反应过程都需要有光呢?20世纪初英国的布莱克曼(Blackman)、德国的瓦伯格(O.Warburg)等人在研究光强、温度和CO2浓度对光合作用影响时发现,在弱光下增加光强能提高光合速率,但当光强增加到一定值时,再增加光强则不再提高光合速率。这时要提高温度或CO2浓度才能提高光合速率。据测定,在10~30℃的范围内,如果光强和CO2浓度都适宜的话,光合作用的Q10=2~2.5(Q10为温度系数,即温度每增加10℃,反应速度增加的倍数)。按照光化学原理,光化学反应是不受温度影响的,或者说它的Q10接近1;而一般的化学反应则和温度有密切关系,Q10为2~3,这说明光合过程中有化学反应的存在。用藻类进行闪光试验,在光能量相同的前提下,一种用连续照光,另一种用闪光照射,中间隔一定暗期,发现后者光合效率是连续光下的200%~400%。这些实验表明了光合作用可以分为需光的光反应(light reaction)和不需光的暗反应(dark reaction)两个阶段。
  1954年美国科学家阿农(D.I.Arnon)等在给叶绿体照光时发现,当向体系中供给无机磷、ADP和NADP时,体系中就会有ATP和NADPH产生。同时发现,只要供给了ATP和NADPH+,即使在黑暗中,叶绿体也可将CO2转变为糖。由于ATP和NADPH是光能转化的产物,具有在黑暗中同化CO2为有机物的能力,所以被称为“同化力”(assimilatory power)。可见,光反应的实质在于产生“同化力”去推动暗反应的进行,而暗反应的实质在于利用“同化力”将无机碳(CO2)转化为有机碳(CH2O)。 
  光合作用中光反应和碳同化(暗反应)分别在叶绿体的不同区域内。光反应所需要的ATP和NADPH底物合成的一系列反应发生在叶绿体类囊体膜上。光反应产物在碳同化反应中一系列的基质酶的作用下固定CO2转化为碳水化合物。

  当然,进一步研究发现光、暗反应对光的需求不是绝对的。即在光反应中有不需光的过程(如电子传递与光合磷酸化),在暗反应中也有需要光调节的酶促反应。现在认为,“光”反应不仅产生“同化力”,而且产生调节“暗”反应中酶活性的调节剂,如还原性的铁氧还蛋白。 
三、光合单位
  释放一个氧分子需要吸收几个光量子?需要多少个叶绿素分子参与?在研究这些问题的过程中,提出了“光合单位”的概念。在研究光能转化效率时,需要知道光合作用中吸收一个光量子所能引起的光合产物量的变化(如放出的氧分子数或固定CO2的分子数),即量子产额(quantum yield)或叫量子效率(quantum efficiency)。量子产额的倒数称为量子需要量(quantum requirement)即释放1分子氧和还原1分子二氧化碳所需吸收的光亮子数。1922年,瓦伯格等计算出最低量子需要量为4,而他的学生爱默生(R.Emersen)等则测定出最低量子需要量为8。后来的实验证据都支持了爱默生的观点,于是8的最低量子需要量得到了普遍的承认,这个数值相当于0.125的量子效率。根据光化学定律(一个分子吸收一个量子,发生一次光化学变化),如果植物的每个叶绿素分子都能进行光化学反应,按还原1个CO2和释放1个O2需吸收8个光量子算,则每当有8个叶绿素分子在一起时,一次足够强的闪光就会造成1个O2的释放。但在1932年,爱默生及阿诺德(W.Arnold)对小球藻(chlorella)悬浮液做闪光试验,计算每次闪光的最高产量是约2 500个叶绿素分子产生1个O2分子,似乎在光合组织中是以2 500个叶绿素分子组成1个集合体进行放氧的,于是当时就把释放1分子氧或同化1分子CO2所需的2 500个叶绿素的分子数目称作1个“光合单位”(photosynthetic unit)。以后又认为,光合是以吸收光量子开始的,应以量子基础计算“光合单位”,1个光合单位应是300(2 500÷8≈300)个叶绿素分子。为什么要300个叶绿素分子吸收1个光子?其解释是:闪光可能被几百个叶绿素分子吸收,可是激发能需传递到1个能够产生光化学反应的“反应中心”(reaction center)区域才能有效。这个反应中心的反应中心色素分子(reaction center pigment)是一种特殊性质的叶绿素a分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能。其余的叶绿素分子和辅助色素分子一起称为聚(集)光色素(light harvesting pigment)或天线色素(antenna pigment),它们的作用好象是收音机的“天线”,起着吸收和传递光能的作用。这样就把原来以叶绿素分子数为指标的光合单位看作了能进行光化学反应的光合机构,光合单位成了天线色素系统和反应中心的总称。 
  进一步研究表明,高等植物光反应中电子的传递不只经过一个反应中心,而是要经过两个反应中心,引起两次光化学反应。1986年,霍尔(Hall)等人指出,光合单位应是包括两个反应中心的约600个叶绿素分子(300×2)以及连结这两个反应中心的光合电子传递链。它能独立地捕集光能,导致氧的释放和NADP+的还原。
  可见,随着光合研究的深入,“光合单位”的含义已多次被修改。究竟一个“光合单位”包多少个叶绿素分子?这要依据这个“光合单位”所执行的功能而定。就O2的释放和CO2的同化而言,光合单位为2500;就吸收一个光量子而言,光合单位为300;就传递一个电子而言,光合单位为600个叶绿素分子。目前多数人赞同霍尔的看法,认为:所谓的“光合单位”,就是指存在于类囊体膜上能进行完整光反应的最小结构单位。 
四、两个光系统
  20世纪40年代,以小球藻为材料研究不同光质的量子产额,发现大于680nm的远红光(far-red light)虽然仍被叶绿素吸收,但量子产额急剧下降,这种现象被称为红降现象(red drop)。1957年,爱默生观察到小球藻在用远红光照射时补加一点稍短波长的光(例如650nm的光),则量子产额大增,比这两种波长的光单独照射的总和还要高。这种在长波红光之外再加上较短波长的光促进光合效率的现象被称为双光增益效应,或叫爱默生增益效应(Emerson enhancement effect)。以后才知道,这是因为光合作用需要两个光化学反应的协同作用。图4-3中的实线表明≤680nm的光可以对两个光反应起作用,而≥680nm的光只对其中的一个光化学反应起作用。 

  当红光和远红一起照射时光合速率远远大于它们分别照射时光合速率的总和。双光增益效应为位置上的一前一后对波长不同选择的进行光合作用的两个光系统的学说存在提供了有利的证据。
  据上述实验结果,希尔(1960)等人提出了双光系统(two photosystem)的概念,把吸收长波光的系统称为光系统Ⅰ(photosystemⅠ,PSⅠ),吸收短波长光的系统称为光系统Ⅱ(photosystemⅡ,PSⅡ)。
  另外,从理论上讲一个量子引起一个分子激发,放出一个电子,那么释放一个O2,传递4个电子(2H2O→4H++4e+O2↑) 只需吸收4个量子,而实际测得光合放氧的最低量子需要量为8~12。这也证实了光合作用中电子传递要经过两个光系统,有两次光化学反应。
  20世纪60年代以后,人们已能直接从叶绿体中分离出PSⅠ和PSⅡ的色素蛋白复合体颗粒,分析各系统的组成与功能,证明了光系统Ⅰ与NADP+的还原有关,光系统Ⅱ与水的光解、氧的释放有关。
  以上仅就光合作用反应式的确定、光暗反应、光合单位、两个光系统等概念的建立介绍了光合作用研究历史中的部分情况。其实,还有许多杰出的成就值得一提。例如,叶绿素分子结构的确定(H.Fischer 1930);光合碳循环的阐明(M.Calvin 1954);叶绿素分子的人工合成(R.B.Woodward 1960);CAM途径的确定(M.Thomas 1960);磷酸化的化学渗透学说的提出(P.Mitchell 1961);叶绿体DNA的分离(R.Sagar M.Ishida 1963);C4途径的确定(M.D.Hatch 1966 C.B.Slack);PSⅡ放氧反应中心复合体的分离(葛培根1982等);光合细菌反应中心三维空间结构的阐明(J.Deisenhofer 1982 H.Michel 1982 R.Huber)光电子传递理论的确定(Marcus 1992);ATP酶的结构与反应机理的研究(Walker 1997 Boyer 1997);……其中有些内容将在下文中提到,有些由于篇幅有限,本章无法安排。
  中国的光合作用研究自20世纪50年代开始,取得了长足的进展。如中国科学院上海植物生理研究所在光合作用能量转换、光合碳代谢的酶学研究等方面,中国科学院植物研究所在光合作用的原初反应和光合色素蛋白复合体研究等方面都有所发现和创新。
  总之,光合作用研究历史不算长,从1771年至今才200多年,然而由于各国科学工作者的努力探索,已取得了举世瞩目的进展,为指导农业生产提供了充分的理论依据。当前光合作用的研究拟将进一步阐明以下几个关键问题:①光合作用结构与功能的关系及其遗传控制 ②反应中心的结构与功能 ③放氧复合体的结构与功能 ④能量转换与电子、质子传递的规律 ⑤CO2同化调节机理等。只有弄清了光合作用的机理,人类才能更好地利用太阳能,以至模拟光合作用人工合成有机物。此外航天事业的迅猛发展也迫切需要为宇宙飞船、太空空间站乃至为开发其他星球提供氧气

和食品等。这些都使光合作用的研究面临新的挑战与机遇。

叶绿体编辑本段回目录

  叶片是光合作用的主要器官,而叶绿体(chloroplast,chlor)是光合作用最重要的细胞器。
  (一)叶绿体的发育、形态及分布
  1.发育 高等植物的叶绿体由前质体(proplastid)发育而来,前质体是近乎无色的质体,它存在于茎端分生组织中。当茎端分生组织形成叶原基时,前质体的双层膜中的内膜在若干处内折并伸入基质扩展增大,在光照下逐渐排列成片,并脱离内膜形成囊状结构的类囊体,同时合成叶绿素,使前质体发育成叶绿体。幼叶绿体能进行分裂。
  2.形态 高等植物的叶绿体大多呈扁平椭圆形,每个细胞中叶绿体的大小与数目依植物种类、组织类型以及发育阶段而异。一个叶肉细胞中约有10至数百个叶绿体,其长3~7μm,厚2~3μm。
  3.分布 叶肉细胞中的叶绿体较多分布在与空气接触的质膜旁,在与非绿色细胞(如表皮细胞和维管束细胞)相邻处,通常见不到叶绿体。这样的分布有利于叶绿体同外界进行气体交换。
  4.运动 叶绿体在细胞中不仅可随原生质环流运动,而且可随光照的方向和强度而运动。在弱光下,叶绿体以扁平的一面向光以接受较多的光能;而在强光下,叶绿体的扁平面与光照方向平行,不致吸收过多强光而引起结构的破坏和功能的丧失。
  (二)叶绿体的基本结构
  叶绿体是由叶绿体被膜、基质和类囊体三部分组成。
  1.叶绿体被膜(chloroplast envelope) 叶绿体被膜由两层单位膜组成,两膜间距5~10nm。被膜上无叶绿素,它的主要功能是控制物质的进出,维持光合作用的微环境。外膜(outer membrane)为非选择性膜,分子量小于10000的物质如蔗糖、核酸、无机盐等能自由通过。内膜(inner membrane)为选择透性膜,CO2、O2、H2O可自由通过;Pi、磷酸丙糖、双羧酸、甘氨酸等需经膜上的运转器(translocator)才能通过;蔗糖、C5`C7糖的二磷酸酯、NADP+、PPi等物质则不能通过。
  2.基质及内含物 被膜以内的基础物质称为基质(stroma),基质以水为主体,内含多种离子、低分子的有机物,以及多种可溶性蛋白质等。基质是进行碳同化的场所,它含有还原CO2与合成淀粉的全部酶系,其中1,5-二磷酸核酮糖羧化酶/加氧酶(ribulose1,5bisphosphate carboxylase/oxygenase,Rubisco)占基质总蛋白的一半以上。此外,基质中含有氨基酸、蛋白质、DNA、RNA、脂类(糖脂、磷脂、硫脂)、四吡咯(叶绿素类、细胞色素类)和萜类(类胡萝卜素、叶醇)等物质及其合成和降解的酶类,还含有还原亚硝酸盐和硫酸盐的酶类以及参与这些反应的底物与产物,因而在基质中能进行多种多样复杂的生化反应。
  基质中有淀粉粒(starch grain)与质体小球(plastoglobulus),它们分别是淀粉和脂类的贮藏库。将照光的叶片研磨成匀浆离心,沉淀在离心管底部的白色颗粒就是叶绿体中的淀粉粒。质体小球又称脂质球或亲锇颗粒,在叶片衰老时叶绿体中的膜系统会解体,此时叶绿体中的质体小球也随之增多增大。
  3.类囊体 类囊体(thylakoid)是由单层膜围起的扁平小囊,膜厚度5~7nm,囊腔(lumen)空间为10nm左右,片层伸展的方向为叶绿体的长轴方向。类囊体分为二类:一类是基质类囊体(stroma thylakoid),又称基质片层(stroma lamella),伸展在基质中彼此不重叠;另一类是基粒类囊体(grana thlylakoid),或称基粒片层(grana lamella),可自身或与基质类囊体重(granum)。片层与片层互相接触的部分称为堆叠区(appessed region),其他部位则为非堆叠区(nonappressed region)。
  (三)类囊体膜上的蛋白复合体
  类囊体膜上含有由多种亚基、多种成分组成的蛋白复合体,主要有四类(图4-5),即光系统Ⅰ(PSI)、光系统Ⅱ(PSⅡ)、Cytb6/f复合体和ATP酶复合体(ATPase),它们参与了光能吸收、传递与转化、电子传递、H+输送以及ATP合成等反应。由于光合作用的光反应是在类囊体膜上进行的,所以称类囊体膜为光合膜(photosynthetic membrane)。这四类蛋白复合体在类囊体膜上的分布大致是:PSⅡ主要存在于基粒片层的堆叠区,PSⅠ与ATPase存在于基质片层与基粒片层的非堆叠区,Cytb6/f复合体分布较均匀。PSⅡ中放氧复合体(oxygen-evolving complex,OEC)在膜的内表面,PSⅡ的原初供体位于膜内侧,原初受体靠近膜外侧。质体醌(plastoquinone,PQ)可以在膜的疏水区内移动。Cytb6/f复合体在膜的疏水区。PSⅠ的电子供体PC在膜的内腔侧,而PSⅠ还原端的Fd、FNR在膜的外侧。蛋白复合体及其亚基的这种分布,有利于电子传递、H+的转移和ATP合成。 

光合色素编辑本段回目录

  在光合作用的反应中吸收光能的色素称为光合色素,主要有三种类型:叶绿素、类胡萝卜素和藻胆素。高等植物中含有前两类,藻胆素仅存在于藻类中。
  (一)光合色素的结构和性质
  1.叶绿素 叶绿素(chlorophyll)是使植物呈现绿色的色素,约占绿叶干重的1%。植物的叶绿素包括a、b、c、d四种。高等植物中含有a、b两种,叶绿素c、d存在于藻类中,而光合细菌中则含有细菌叶绿素(bacteriochlorophyll)。叶绿素a(Chl a)呈蓝绿色,叶绿素b(Chl b)呈黄绿色,分子量分别为892和906,叶绿素是双羧酸的酯,其中一个羧基被甲醇所酯化,另一个被叶绿醇所酯化,它们的分子式可以写成:
  叶绿素a与b的分子式很相似,不同之处是叶绿素a比b多两个氢少一个氧。两者结构上的差别仅在于叶绿素a的B吡咯环上一个甲基(-CH3)被醛基(-CHO)所取代。叶绿素分子含有一个卟啉环(porphyrin ring)的“头部”和一个叶绿醇(植醇,phytol)的“尾巴”。卟啉环由四个吡咯环与四个甲烯基(-CH=)连接而成,它是各种叶绿素的共同基本结构。卟啉环的中央络合着一个镁原子,镁偏向带正电荷,而与其相联的氮原子则带负电荷,因而“头部”有极性,是亲水的。另外还有一个含羰基的同素环(含相同元素的环),其上一个羧基以酯键与甲醇相结合。环D上有一个丙酸侧链以酯键与叶绿醇相结合,叶绿醇是由四个异戊二烯单位所组成的双萜,是亲脂的,能伸入类囊体的拟脂层,故叶绿素能定向排列。
  卟环上的共轭双键和中央镁原子容易被光激发而引起电子的得失,这决定了叶绿素具有特殊的光化学性质。 卟啉环中的镁可被H+、Cu2+、Zn2+ 等所置换。当为H+所置换后,即形成褐色的去镁叶绿素(pheophytin,Pheo)。去镁叶绿素中的H+ 再被Cu2+取代,就形成铜代叶绿素,颜色比原来的叶绿素更鲜艳稳定。根据这一原理可用醋酸铜处理来保存绿色标本。 叶绿素是一种酯,因此不溶于水。通常用含有少量水的有机溶剂如80%的丙酮,或者95%乙醇,或丙酮∶乙醇∶水=4.5∶4.5∶1的混合液来提取叶片中的叶绿素,用于测定叶绿素含量。之所以要用含有水的有机溶剂提取叶绿素,这是因为叶绿素与蛋白质结合很牢,需要经过水解作用才能被提取出来。
  2.类胡萝卜素 类胡萝卜素(carotenoid)是由8个异戊二烯形成的四萜,含有一系列的共轭双键,分子的两端各有一个不饱和的取代的环己烯,也即紫罗兰酮环,它们不溶于水而溶于有机溶剂。类胡萝卜素包括胡萝卜素(carotene,C40H56O2)和叶黄素(xanthophyll, C40H56O2)。前者呈橙黄色,后者呈黄色。胡萝卜素是不饱和的碳氢化合物,有α、β、γ三种同分异构体,其中以β?胡萝卜素在植物体内含量最多。
  叶黄素是由胡萝卜素衍生的醇类,也叫胡萝卜醇(carotenol),通常叶片中叶黄素与胡萝卜素的含量之比约为2:1。
  类胡萝卜素除了有吸收传递光能的作用外,还可在强光下逸散能量,如β-胡萝卜素就是单线态分子氧(1O2)的猝灭剂,具有使叶绿素免遭伤害的光保护作用(photoprotection)。
  一般来说,叶片中叶绿素与类胡萝卜素的比值约为3∶1,所以正常的叶子总呈现绿色。秋天或在不良的环境中,叶片中的叶绿素较易降解,数量减少,而类胡萝卜素比较稳定,所以叶片呈现黄色。类胡萝卜素总是和叶绿素一起存在于高等植物的叶绿体中,此外也存在于果实、花冠、花粉、柱头等器官的有色体中。
  3.藻胆素(phycobilin) 仅存在于红藻和蓝藻中,主要有藻红蛋白(phycoerythrin)、藻蓝蛋白(phycocyanin)和别藻蓝蛋白(allophycocyanin)三类,前者呈红色,后两者呈蓝色。它们的生色团与蛋白以共价键牢固地结合。藻胆素分子中的四个吡咯环形成直链共轭体系,不含镁也没有叶绿醇链。藻胆素也有收集光能的功能。
  由于类胡萝卜素和藻胆素吸收的光能能够传递给叶绿素用于光合作用,因此它们被称为光合作用的辅助色素(accessory photosynthetic pigments)。
  (二)光合色素的吸收光谱
  用分光光度计能精确测定光合色素的吸收光谱(absorption spectrum)。叶绿素最强的吸收区有两处:波长640~660nm的红光部分和430~450nm的蓝紫光部分。叶绿素对橙光、黄光吸收较少,尤以对绿光的吸收最少,所以叶绿素的溶液呈绿色。
  叶绿素a和叶绿素b的吸收光谱很相似,但也稍有不同:叶绿素a在红光区的吸收峰比叶绿素b的高,而蓝光区的吸收峰则比叶绿素b的低,也就是说,叶绿素b吸收短波长蓝紫光的能力比叶绿素a强。
  一般阳生植物叶片的叶绿素a/b比值约为3∶1,而阴生植物的叶绿素a/b比值约为2.3∶1。叶绿素b含量的相对提高就有可能更有效地利用漫射光中较多的蓝紫光,所以叶绿素b有阴生叶绿素之称。
  类胡萝卜素的吸收带在400~500nm的蓝紫光区,它们基本不吸收红.橙.黄光,从而呈现橙黄色或黄色.
  藻蓝蛋白的吸收光谱最大值是在橙红光部分,而藻红蛋白则是在绿光部分。
  植物体内不同光合色素对光波的选择吸收是植物在长期进化中形成的对生态环境的适应,这使植物可利用各种不同波长的光进行光合作用。
  (三)叶绿素的生物合成及其与环境条件的关系
  1.叶绿素的生物合成 叶绿素的合成是在前质体或叶绿体中在一系列酶的作用下形成的。合成叶绿素分子中的吡咯环的起始物质是δ-氨基酮戊酸(δ-aminolevulinic acid,ALA),在高等植物中ALA由谷氨酸或α-酮戊二酸转化而来。
  2.影响叶绿素形成的条件
  (1)光 光是影响叶绿素形成的主要条件。从原叶绿素酸酯转变为叶绿酸酯需要光,而光过强,叶绿素又会受光氧化而破坏。黑暗中生长的幼苗呈黄白色,遮光或埋在土中的茎叶也呈黄白色。这种因缺乏某些条件而影响叶绿素形成,使叶子发黄的现象,称为黄化现象(etiolation)。
  也有例外情况,例如藻类、苔藓、蕨类和松柏科植物在黑暗中可以合成叶绿素,其数量当然不如在光下形成的多;柑橘种子的子叶及莲子的胚芽在无光照的条件下也能形成叶绿素,推测这些植物中存在可代替可见光促进叶绿素合成的生物物质。
  (2)温度 叶绿素的生物合成是一系列酶促反应,受温度影响。叶绿素形成的最低温度约2℃,最适温度约30℃,最高温度约40℃。秋天叶子变黄和早春寒潮过后秧苗变白,都与低温抑制叶绿素形成有关。高温下叶绿素分解大于合成,因而夏天绿叶蔬菜存放不到一天就变黄;相反,温度较低时,叶绿素解体慢,这也是低温保鲜的原因之一。
  (3)营养元素 叶绿素的形成必须有一定的营养元素。氮和镁是叶绿素的组成成分,铁、锰、铜、锌等则在叶绿素的生物合成过程中有催化功能或其它间接作用。因此,缺少这些元素时都会引起缺绿症(chlorosis),其中尤以氮的影响最大,因而叶色的深浅可作为衡量植株体内氮素水平高低的标志。
  (4)氧 缺氧能引起Mg-原卟啉IX或Mg-原卟啉甲酯的积累,影响叶绿素的合成。
  (5)水 缺水不但影响叶绿素生物合成,而且还促使原有叶绿素加速分解,所以干旱时叶片呈黄褐色。
 

原初反应编辑本段回目录

  光合作用的实质是将光能转变成化学能。根据能量转变的性质,将光合作用分为三个阶段:1.光能的吸收、传递和转换成电能,主要由原初反应完成;2.电能转变为活跃化学能,由电子传递和光合磷酸化完成;3.活跃的化学能转变为稳定的化学能,由碳同化完成。
   原初反应(primary reaction)是指从光合色素分子被光激发,到引起第一个光化学反应为止的过程,它包括光能的吸收、传递与光化学反应。原初反应与生化反应相比,其速度非常快,可在皮秒(ps,10-12s)与纳秒(ns,10-9s)内完成,且与温度无关,可在-196℃(77K,液氮温度)或-271℃(2K,液氦温度)下进行。由于速度快,散失的能量少,所以其量子效率接近1。   
一、光能的吸收与传递
   (一)激发态的形成
   通常色素分子是处于能量的最低状态—基态(ground state)。色素分子吸收了一个光子后,会引起原子结构内电子的重新排列。其中一个低能的电子获得能量后就可克服原子核正电荷对其的吸引力而被推进到高能的激发态(excited state)。  
   各能态之间因分子内振动和转动还表现出若干能级。
   叶绿素在可见光部分有二个吸收区:红光区与蓝光区。如果叶绿素分子被蓝光激发,电子就跃迁到能量较高的第二单线态;如果被红光激发,电子则跃迁到能量较低的第一单线态。处于单线态的电子,其自旋方向保持原有状态,即配对电子的自旋方向相反。如果电子在激发或退激过程中,其自旋方向发生了变化,使原配对的电子自旋方向相同,那么该电子就进入了能级较单线态低的三线态。
   (二) 激发态的命运
   激发态是不稳定的状态,经过一定时间后,就会发生能量的转变,转变的方式有以下几种:
   1.放热 激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三线态,以及从三线态回至基态时的放热:
   这些都是无辐射退激。另外吸收蓝光处于第二单线态的叶緑素分子,其具有的能量虽远大于第一单线态的叶緑素分子。但超过部分对光合作用是无用的,在极短的时间内叶緑素分子要从第二单线态降至第一单线态,多余的能量在降级过程中也是以热能释放。由于叶绿素是以第一单线态参加光合作用的。所以一个蓝光光子所引起的光合作用与一个红光光子所引起的光合作用是相同的,在能量利用上蓝光没有红光高。
   2.发射荧光或磷光 激发态的叶绿素分子回至基态时,可以光子形式释放能量。处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光(fluorescence),而处在三线态的叶绿素分子回至基态时所发出的光称为磷光(phosphorescence)。磷光波长比荧光波长长,转换的时间也较长,而强度只有荧光的1%,故需用仪器才能测量到。 

  由于叶绿素分子吸收的光能有一部分消耗在分子内部的振动上,且荧光又总是从第一单线态的最低振动能级辐射的,辐射出的光能必定低于吸收的光能,因此叶绿素的荧光的波长总要比被吸收的波长长些。对提取的叶绿体色素浓溶液照光,在与入射光垂直的方向上可观察到呈暗红色的荧光。离体色素溶液为什么易发荧光,这是因为溶液中缺少能量受体或电子受体的缘故。在色素溶液中,如加入某种受体分子,能使荧光消失,这种受体分子就称为荧光猝灭剂(fluorescence quencher),常用Q表示,在光合作用的光反应中,Q即为电子受体。色素发射荧光的能量与用于光合作用的能量是相互竞争的,这就是叶绿素荧光常常被认作光合作用无效指标的依据。
   3.色素分子间的能量传递 激发态的色素分子把激发能传递给处于基态的同种或异种分子而返回基态的过程称为色素分子间能量的传递。
   色素分子吸收的光能,若通过发热、发荧光与磷光等方式退激,能量就被浪费了。在光合器里,聚光叶绿素分子在第一单线态的能量水平上,通过分子间的能量传递,把捕获的光能传到反应中心色素分子,以推动光化学反应的进行。一般认为,色素分子间激发能不是靠分子间的碰撞(因原初反应不受温度影响)传递的,也不是靠分子间电荷转移传递的,可能是通过“激子传递”或“共振传递”方式传递的。
   激子传递(exciton transfer) 激子通常是指非金属晶体中由电子激发的量子,它能转移能量但不能转移电荷。在由相同分子组成的聚光色素系统中,其中一个色素分子受光激发后,高能电子在返回原来轨道时也会发出激子,此激子能使相邻色素分子激发,即把激发能传递给了相邻色素分子,激发的电子可以相同的方式再发出激子,并被另一色素分子吸收,这种在相同分子内依靠激子传递来转移能量的方式称为激子传递。这样,激发能不仅仅属于受光的色素分子,它可能被聚光色素系统中的某一区域的色素集体所共用。激子传递仅适用于分子间距离小于2nm的相同色素分子间的光能传递,传递速率与分子距离的3次方成反比。
   共振传递(resonance transfer) 在色素系统中,一个色素分子吸收光能被激发后,其中高能电子的振动会引起附近另一个分子中某个电子的振动(共振),当第二个分子电子振动被诱导起来,就发生了电子激发能量的传递,第一个分子中原来被激发的电子便停止振动,而第二个分子中被诱导的电子则变为激发态,第二个分子又能以同样的方式激发第三个、第四个分子。这种依靠电子振动在分子间传递能量的方式就称为“共振传递”。共振传递仅适用于分子间距离大于2nm的色素分子间的光能传递,传递速率与分子距离的6次方成反比。
   在共振传递过程中,供体和受体分子可以是同种,也可以是异种分子。分子既无光的发射也无光的吸收。
   通过上述色素分子间的能量传递,聚光色素吸收的光能会很快到达并激发反应中心色素分子,启动光化学反应。 
二、光化学反应
   (一)反应中心与光化学反应
   1.反应中心 原初反应的光化学反应是在光系统的反应中心(reaction center)进行的。反应中心是发生原初反应的最小单位,它是由反应中心色素分子、原初电子受体、次级电子受体与供体等电子传递体,以及维持这些电子传递体的微环境所必需的蛋白质等成分组成的。反应中心中的原初电子受体(primary electron acceptor)是指直接接收反应中心色素分子传来电子的电子传递体,而反应中心色素分子是光化学反应中最先向原初电子受体供给电子的,因此反应中心色素分子又称原初电子供体(primary electron donor)。
   2.光化学反应 原初反应的光化学反应实际就是由光引起的反应中心色素分子与原初电子受体间的氧化还原反应,可用下式表示光化学反应过程:
   P·A→ P*·A → P+·A-
   原初电子供体,即反应中心色素(P)吸收光能后成为激发态(P*),其中被激发的电子移交给原初电子受体(A),使其被还原带负电荷(A-),而原初电子供体则被氧化带正电荷(P+)。这样,反应中心出现了电荷分离,到这里原初反应也就完成了。原初电子供体失去电子,有了“空穴”,成为“陷阱”(trap),便可从次级电子供体那里争夺电子;而原初电子受体得到电子,使电位值升高,供电子的能力增强,可将电子传给次级电子受体。供电子给P+的还原剂叫做次级电子供体(secondary electron donor,D),从A-接收电子的氧化剂叫做次级电子受体(secondary electron acceptor,A1),那么电荷分离后反应中心的更新反应式可写为:
   D·〔P+·A-〕·A1 →D+·〔P·A〕·A1-
   这一过程在光合作用中不断反复地进行,从而推动电子在电子传递体中传递。 
   (二)PSⅠ和PSⅡ的光化学反应
   高等植物的两个光系统有各自的反应中心。PSⅠ和PSⅡ反应中心中的原初电子供体很相似,都是由两个叶绿素a分子组成的二聚体,分别用P700、P680来表示。这里P代表色素(pigment),700、680则代表P氧化时其吸收光谱中变化最大的波长位置是近700nm或680nm处,也即用氧化态吸收光谱与还原态吸收光谱间的差值最大处的波长来作为反应中心色素的标志。
   PSⅠ的原初电子受体是叶绿素分子(A0),PSⅡ的原初电子受体是去镁叶绿素分子(Pheo),它们的次级电子受体分别是铁硫中心和醌分子。   
   PSⅠ的原初反应为: P700·A0 →P700·A0 →P700+·A0-
   PSⅡ的原初反应为: P680·Pheo→P680·Pheo→P680+·Pheo-
   在原初反应中,受光激发的反应中心色素分子发射出高能电子,完成了光→电转变,随后高能电子将沿着光合电子传递链进一步传递。

电子传递和光合磷酸化编辑本段回目录

  原初反应使光系统的反应中心发生电荷分离,产生的高能电子推动着光合膜上的电子传递。电子传递的结果,一方面引起水的裂解放氧以及NADP+的还原;另一方面建立了跨膜的质子动力势,启动了光合磷酸化,形成ATP。这样就把电能转化为活跃的化学能。  
一、电子和质子的传递
  (一)光合链(photosynthetic chain)所谓光合链是指定位在光合膜上的,由多个电子传递体组成的电子传递的总轨道。现在较为公认的是由希尔(1960)等人提出并经后人修正与补充的“Z”方案(“Z” scheme),即电子传递是在两个光系统串联配合下完成的,电子传递体按氧化还原电位高低排列。使电子传递链呈侧写的“Z”形。
  (1)电子传递链主要由光合膜上的PSⅡ、Cyt b6/f、PSⅠ三个复合体串联组成。(2)电子传递有二处是逆电势梯度,即P680至P680*,P700至P700*,这种逆电势梯度的“上坡”电子传递均由聚光色素复合体吸收光能后推动,而其余电子传递都是顺电势梯度进行的。(3)水的氧化与PSⅡ电子传递有关,NADP+的还原与PSⅠ电子传递有关。电子最终供体为水,水氧化时,向PSⅡ传交4个电子,使2H2O产生1个O2和4个H+。电子的最终受体为NADP+。(4)PQ是双电子双H+传递体,它伴随电子传递,把H+从类囊体膜外带至膜内,连同水分解产生的H+一起建立类囊体内外的H+电化学势差,并以此而推动ATP生成。
  (二)光合电子传递体的组成与功能
  以下按“Z”图式中电子传递的顺序介绍几种电子传递体的性质与功能。
  1.PSⅡ复合体 PSⅡ的生理功能是吸收光能,进行光化学反应,产生强的氧化剂,使水裂解释放氧气,并把水中的电子传至质体醌。
  (1)PSⅡ复合体的组成与反应中心中的电子传递 PSⅡ是含有多亚基的蛋白复合体。它由聚光色素复合体Ⅱ、中心天线、反应中心、放氧复合体、细胞色素和多种辅助因子组成。PSⅡ的聚光色素复合体(PSⅡ light harvesting pigment complex,LHCⅡ),因离反应中心远而称“远侧天线”。LHCⅡ除具有吸收、传递光能的作用外,还具有耗散过多激发能,保护光合器免受强光破坏的作用。另外,LHCⅡ磷酸化后,可在类囊体膜上移动,从堆叠的基粒(富含PSⅡ)区域横向移动至非堆叠的基质(富含PSⅠ)区域,并成为PSⅠ的聚光色素系统,扩大了PSⅠ的捕光面积,协调两个光系统之间的能量分配。这就是所谓的“天线移动”。
  组成中心天线的CP47和CP43是指分子量分别为47 000、43 000并与叶绿素结合的聚光色素蛋白复合体,它们围绕P680,比LHCⅡ更快地把吸收的光能传至PSⅡ反应中心,所以被称为中心天线或“近侧天线”。
  PSⅡ反应中心的核心部分是分子量分别为32 000和34 000的D1和D2两条多肽。反应中心的次级电子供体YZ、中心色素P680、原初电子受体Pheo、次级电子受体QA、QB等都结合在D1和D2上。 其中与D1结合的质体醌定名为QB,与D2结合的质体醌定名为QA。这里的Q有双重涵义,既是醌(quinone)的字首,又是荧光猝灭剂(quencher)的字首。QA是单电子体传递体,每次反应只接受一个电子生成半醌(semiquinone)(图4-11),它的电子再传递至QB,QB是双电子传递体,QB可两次从QA接受电子以及从周围介质中接受2个H+而还原成氢醌(hydroquinone)QH2。这样生成的氢醌可以与醌库的PQ交换,生成PQH2。
   放氧复合体(oxygen-evolving complex,OEC)又称M,在PSⅡ靠近类囊体腔的一侧,参与水的裂解和氧的释放。
  (2)水的氧化与放氧 水的氧化反应是生物界中植物光合作用特有的反应,也是光合作用中最重要的反应之一。前已提到每释放1个O2需要从2个H2O中移去 4 个 e-,同时形成 4 个 H+。
  20世纪60年代,法国的乔利尔特(P. Joliot)发明了能灵敏测定微量氧变化的极谱电极,用它测定小球藻的光合放氧反应。他们将小球藻预先保持在暗中,然后给以一系列的瞬间闪光照射(如每次闪光5~10μs,间隔300ms)。发现闪光后氧的产量是不均量的,是以4为周期呈现振荡,即第一次闪光后没有O2的释放,第二次释放少量O2,第三次O2的释放达到高峰,每4次闪光出现1次放氧峰(图4-12)。用高等植物叶绿体实验得到同样的结果。科克(B.Kok,1970)等人根据这一事实提出了关于H2O裂解放氧的“四量子机理假说”:①PSⅡ的反应中心与H2O之间存在一个正电荷的贮存处(S) ②每次闪光,S交给PSⅡ反应中心1个e-;③当S失去4e-带有4个正电荷时能裂解2个H2O释放1个O2,S即为M,按照氧化程度(即带正电荷的多少)从低到高的顺序,将不同状态的M分别称为S0、S1、S2、S3和S4。即S0不带电荷,S1带 1 个正电荷,……S4带 4 个正电荷。每一次闪光将状态 S 向前推进一步,直至S4。然后S4从 2 个H2O中获取 4 个e-,并回到S0。此模型被称为水氧化钟(water oxidizing clock)或Kok钟(Kok clock)。这个模型还认为,S0和S1是稳定状态,S2和S3在暗中退回到S1,S4不稳定。这样在叶绿体暗适应过程后,有3/4的M处于S1,1/4处于S0。因此最大的放O2量在第三次闪光时出现。
  S的各种状态很可能代表了含锰蛋白的不同氧化态。每个M含有4个Mn,Mn可以有M2+、Mn3+和Mn4+的各种不同氧化态。而所有4个Mn对O2的释放都是必需的。原Kok钟模型没有指出 H+的释放部位与机理。后人的闪光实验表明,当S变化时,H+ 的释放数是1、0、1、2,即2个H2O中的4H+分别在S0→S1,S2→S3,S3→S4转变时释放。水中的O2被释放,而H+进入类囊体腔中,提高了类囊体腔中的H+浓度。
  2.质醌 质醌(plastoquinone,PQ)也叫质体醌,是PSⅡ反应中心的末端电子受体,也是介于PSⅡ复合体与Cyt b6/f复合体间的电子传递体。质体醌为脂溶性分子,能在类囊体膜中自由移动,转运电子与质子。质体醌在膜中含量很高,约为叶绿素分子数的5%~10%,故有“PQ库”之称。PQ库作为电子、质子的缓冲库,能均衡两个光系统间的电子传递(如当一个光系统受损时,使另一光系统的电子传递仍能进行),可使多个PSⅡ复合体与多个Cyt b6/f 复合体发生联系,使得类囊体膜上的电子传递成网络式地进行。另一方面,质体醌是双电子、双质子传递体,氧化态的质体醌可在膜的外侧接收由PSⅡ(也可是PSⅠ)传来的电子,同时与H+结合;还原态的质体醌在膜的内侧把电子传给Cyt b6/f ,氧化时把H+释放至膜腔。这对类囊体膜内外建立质子梯度起着重要的作用。
  3.Cyt b6/f 复合体 Cyt b6/f 复合体作为连接PSⅡ与PSⅠ两个光系统的中间电子载体系统,含有Cyt f、Cyt b6(2个,为电子传递循环剂)和Rieske铁-硫蛋白(又称〔Fe-S〕R,是由Rieske发现的非血红素的Fe蛋白质),主要催化PQH2的氧化和PC的还原,并把质子从类囊体膜外间质中跨膜转移到膜内腔中。因此Cyt b6/f 复合体又称PQH2·PC氧还酶。
  PQH2+2PC(Cu2+) PQ + 2PC(Cu+) + 2H+
  4.质蓝素 质蓝素(plastocyanin,PC)是位于类囊体膜内侧表面的含铜的蛋白质,氧化时呈蓝色。它是介于Cyt b6/f复合体与PSⅠ之间的电子传递成员。通过蛋白质中铜离子的氧化还原变化来传递电子。
  高等植物PSⅠ复合体存在类囊体非堆叠的部分,PSⅡ复合体存在堆叠部分,而Cyt b6/f 比较均匀地分布在膜中,因而推测PC通过在类囊体腔内扩散移动来传递电子。
  5.PSⅠ复合体 PSⅠ的生理功能是吸收光能,进行光化学反应,产生强的还原剂,用于还原NADP+,实现PC到NADP+的电子传递。
  高等植物的PSⅠ由反应中心和LHCⅠ等组成。反应中心内含有11~12个多肽,其中在1a和1b两个多肽上结合着P700及A0、A1、FX、FA、FB等电子传递体。FX、FA、FB是PSⅠ中3个铁硫蛋白,都具有4铁-4硫中心结构,其中4个硫与蛋白质的4个半胱氨酸残基连接,它们主要依4铁-4硫中心中的铁离子的氧化还原来传递电子。高等植物每一个PSⅠ复合体中含有两个LHCⅠ(light harvesting pigment complex Ⅰ),LHCⅠ吸收的光能能传给PSⅠ的反应中心。
  6.铁氧还蛋白和铁氧还蛋白-NADP+还原酶 铁氧还蛋白(ferrdoxin,Fd)和铁氧还蛋白-NADP+还原酶(ferrdoxin-NADP+ reductase,FNR)都是存在类囊体膜表面的蛋白质。Fd是通过它的2铁-2硫(图4-14右)活性中心中的铁离子的氧化还原传递电子的。Fd也是电子传递的分叉点。电子从PSⅠ传给Fd后有多种去向:如传给FNR进行非环式电子传递;传给Cyt b6/f 或经NADPH再传给PQ进行环式电子传递;传给氧进行假环式电子传递; 交给硝酸参与硝酸还原; 传给硫氧还蛋白(Td)进行光合酶的活化调节……。FNR中含1分子的黄素腺嘌呤二核苷酸(FAD),依靠核黄素的氧化还原来传递H+。因其与Fd结合在一起,所以称Fd-NADPv还原酶。FNR是光合电子传递链的末端氧化酶,接收Fd传来的电子和基质中的H+,还原NADP+为NADPH。
  7.光合膜上的电子与H+的传递
  LHCⅡ等受光激发后将接受的光能传到PSⅡ反应中心P680,并在那里发生光化学反应,同时将激发出的e-传到原初电子受体Pheo,再传给靠近基质一边的结合态的质体醌(QA),从而推动了PSⅡ的最初电子传递。P680失去e-后,变成一个强的氧化剂,它向位于膜内侧的电子传递体YZ争夺电子而引起水的分解,并将产生的氧气和H+释放在内腔。另一方面,QA的e-经QB传给PQ,PQ的还原需要2e-和来自基质的2H+。还原的PQH2向膜内转移,传2e-给Cyt b6/f复合体,其中1个e-交给Cyt b6/f ,进而传给PQ,另1个e-则传给〔Fe-S〕R。因为Cyt b6/f 的氧化还原仅涉及电子,所以2H+就释放到膜腔。还原的Cyt f将e-经位于膜内侧表面的PC传至位于膜内侧的PSⅠ反应中心P700。
  与PSⅡ类同,P700受光激发后,把e-传给A0,经A1、Fx、FA和FB,再把e-交给位于膜外侧的Fd与FNR,最后由FNR使NADP+还原,NADP+还原时,还要消耗基质中的H+。NADPH留在基质中,用于光合碳的还原。
  在电子传递的同时,H+从基质运向膜内腔,产生了膜内外的H+电化学势梯度。依电化学势梯度,H+经ATP酶流出时偶联ATP的产生,形成的ATP留在基质中,用于各种代谢反应。
  (三) 光合电子传递的类型
  根据电子传递到Fd后去向,将光合电子传递分为三种类型。
  1.非环式电子传递(noncyclic electron transport) 指水中的电子经PSⅡ与PSⅠ一直传到NADP+的电子传递途径。传递过程如下:
  H2O → PSⅡ → PQ →Cyt b6/f → PC → PSⅠ→Fd→FNR → NADP+
  按非环式电子传递,每传递4个e-,分解2个H2O,释放1个O2,还原2个NADP+,需要吸收8个光量子,量子产额为1/8,同时转运8个H+进类囊体腔。
  2,环式电子传递(cyclic electron transport) 通常指PSⅠ中电子由经Fd经PQ,Cyt b6/f PC等传递体返回到PSⅠ而构成的循环电子传递途径。即:
  PSⅠ→Fd→PQ→Cyt b6/f→PC→PSⅠ
  环式电子传递不发生H2O的氧化,也不形成NADPH,但有H+的跨膜运输,每传递一个电子需要吸收一个光量子。也有人认为,PSⅡ中也存在着循环电子传递途径,其电子是从QB经Cytb559 ,然后再回到P680。
  3.假环式电子传递(pseudocyclic electron transport) 指水中的电子经PSⅠ与PSⅡ传给Fd后再传给O2的电子传递途径,这也叫做梅勒反应(Mehler′s reaction)。
  HVO→PSⅡ→PQ→Cyt b6/f→PC→PSⅠ→Fd→O2
  Fd为单电子传递体,其氧化时把电子交给O2,使O2生成超氧阴离子自由基。
  Fd还原 + O2 Fd氧化 + O2?
  叶绿体中有超氧化物歧化酶(superoxide dismutase,SOD),能消除O2 - 。
  O2- + O2- + 2H+ H2O2 + O2
  假环式电子传递的结果造成O2的消耗与H2O2的生成。假环式电子传递实际上也是非环式电子传递,也有H+的跨膜运输,只是电子的最终受体不是NADP+而是O2。 

二、光合磷酸化

  1954年阿农等人用菠菜叶绿体,弗伦克尔(A.M.Frenkel)用紫色细菌的载色体相继观察到,光下向叶绿体或载色体体系中加入ADP与Pi则有ATP产生。从此人们把光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应称为光合磷酸化(photosynthetic phosphorylation,photophosphorylation)。
  (一) 光合磷酸化的类型
  与光合电子传递类同,光合磷酸化也被分为三种类型。
  1.非环式光合磷酸化(noncyclic photophosphorylation) 与非环式电子传递偶联产生ATP的反应。按图4-15,非环式光合磷酸化与吸收量子数的关系可用下式表示。
  2NADP++3ADP+3Pi → 2NADPH+3ATP+O2+2H++6H2O
  在进行非环式光合磷酸化的反应中,体系除生成ATP外,同时还有NADPH的产生和氧的释放。非环式光合磷酸化仅为含有基粒片层的放氧生物所特有,它在光合磷酸化中占主要地位。
  2.环式光合磷酸化(cyclic photophosphorylation) 与环式电子传递偶联产生ATP的反应。
   ADP+Pi → ATP+H2O
  环式光合磷酸化是非光合放氧生物光能转换的唯一形式,主要在基质片层内进行。它在光合演化上较为原始,在高等植物中可能起着补充ATP不足的作用。
  3.假环式光合磷酸化(pseudocyclic photophosphorylation) 与假环式电子传递偶联产生ATP的反应。此种光合磷酸化既放氧又吸氧,还原的电子受体最后又被氧所氧化。
  H2O+ADP+Pi → ATP+ O2-。+4H+
  NADP+供应量较低,例如NADPH的氧化受阻,则有利于假环式电子传递的进行。
  非环式光合磷酸化与假环式光合磷酸化均被DCMU(二氯苯基二甲基脲,dichlorophenyl dimethylures,商品名为敌草隆,diuron,一种除草剂)所抑制,而环式光合磷酸化则不被DCMU抑制。
  (二)光合磷酸化的机理
  1.光合磷酸化与电子传递的偶联关系 三种光合磷酸化作用都与电子传递相偶联。如果在叶绿体体系中加入电子传递抑制剂,那么光合磷酸化就会停止;同样,在偶联磷酸化时,电子传递则会加快,所以在体系中加入磷酸化底物会促进电子的传递和氧的释放。
  磷酸化和电子传递的关系可用ATP/e2-或P/O来表示。ATP/e2-表示每对电子通过光合电子传递链而形成的ATP分子数;P/O表示光反应中每释放1个氧原子所能形成的ATP分子数。比值越大,表示磷酸化与电子传递偶联越紧密。从图4-15或(4-27)式看,经非环式电子传递时分解2分子H2O,放1 个O2与传递2对电子,使类囊体膜腔内增加8个H+(放氧复合体处放4个H+,PQH2与Cytb6/f间的电子传递时放4个H+),如按8个H+形成3个ATP算,即传递2对电子放1个O2,能形成3个ATP,即ATP/e2或P/O理论值应为1.5,而实测值是在0.9~1.3之间。
  2.化学渗透学说 关于光合磷酸化的机理有多种学说,如中间产物学说、变构学说、化学渗透学说等,其中被广泛接受的是化学渗透学说。
  化学渗透学说(chemiosmotic theory)由英国的米切尔(Mitchell,1961)提出,该学说假设能量转换和偶联机构具有以下特点:①由磷脂和蛋白多肽构成的膜对离子和质子的透过具有选择性 ②具有氧化还原电位的电子传递体不匀称地嵌合在膜内。③膜上有偶联电子传递的质子转移系统。④膜上有转移质子的ATP酶。在解释光合磷酸化机理时,该学说强调:光合电子传递链的电子传递会伴随膜内外两侧产生质子动力(proton motive force,pmf),并由质子动力推动ATP的合成。许多实验都证实了这一学说的正确性。
  (1)化学渗透学说的实验证据
  ①阶段光合磷酸化实验 指光合磷酸化可以相对分成照光阶段和暗阶段来进行,照光不向叶绿体悬浮液中加磷酸化底物,而断光时再加入底物能形成ATP的实验。1962年,中国的沈允钢等人,用此实验探测到光合磷酸化高能态(Z*)的存在。1963年贾格道夫(Jagendorf)等也观察到了光合磷酸化高能态的存在。起初认为Z*是一种化学物质,以此提出了光合磷酸化中间物学说。现在知道高能态即为膜内外的H+电化学势。所谓两阶段光合磷酸化,其实质是光下类囊体膜上进行电子传递产生了跨膜的H+电化学势,暗中利用H+电化学势将加入的ADP与Pi合成ATP。 
  ②酸-碱磷酸化实验 贾格道夫等(1963)在暗中把叶绿体的类囊体放在pH4的弱酸性溶液中平衡,让类囊体膜腔的pH下降至4(图4-16A),然后加进pH8和含有ADP和Pi的缓冲溶液,这样瞬间的pH变化使得类囊体膜内外之间产生一个H+梯度。这个H+梯度能使ADP与Pi生成ATP,而这时并不照光,也没有电子传递。这种驱动ATP合成的类囊体内外的pH差在活体中正是由光合电子传递和H+转运所形成的。这一酸-碱磷酸化实验给化学渗透假说以最重要的支持证据。
  ③光下类囊体吸收质子的实验 对无pH缓冲液的叶绿体悬浮液照光,用pH计可测到悬浮液的pH升高。这是由于光合电子传递引起了悬浮液中质子向类囊体膜腔运输,使得膜内H+浓度高而膜外较低的缘故。电子传递产生了质子梯度后,质子就有反向跨膜转移的趋向,质子反向转移时,质子梯度所贮藏的能量就被用去合成ATP。
  以上实验都证实了米切尔的化学渗透学说的正确性,因而米切尔获得了1978年度的诺贝尔化学奖。
  (2)H+电化学势与质子动力 e-传递与H+向膜内的运转,还会引起类囊体膜的电势变化,使膜外侧带负电荷,膜内侧带正电荷,从而产生H+电化学势差(ΔμH+):
  ΔμH+=μH+内 -μH+外
  =RT(ln [H+内] -ln [H+外])+F(E内-E外)
  =RTln([H+内]/ [H+外])+FΔE
  =2.3RTΔpH+FΔE (4-30)
  式中R-气体常数(8.314J·mol-1·K-1),T-绝对温度(K),F-法拉第常数(96.5kJ·mol-1·V-1),ΔE-膜电势(V)。
  25℃时,ΔμH+ =5.7ΔpH(kJ·mol-1)+96.5ΔE(kJ·mol-1)
  上式(4-31)中5.7ΔpH(kJ·mol-1)为膜内外质子浓度差所具有的能量,而96.5ΔE(kJ·mol-1)为膜电势所具有的能量。
  将式两边用F(96.5kJ·mol-1·V-1)除,规定△μH+/F为质子动力,其单位为电势(V)。
  在25℃时:pmf=0.059ΔpH+ΔE
  叶绿体类囊体膜的质子动力大部分是来自ΔpH部分,电荷分布所产生的ΔE的贡献很小,原因是其它离子,如Cl-、K+或Mg2+也能穿透类囊体膜,当H+穿透类囊体膜时,Cl-可以与H+同向穿透,或Mg2+ 与H+(1Mg2+/2H+)反向穿透,这样就保持了电中性,结果不产生电势差。
  3.ATP合成的部位——ATP酶 质子反向转移和合成ATP是在ATP酶(腺苷三磷酸酶 adenosine triphosphatase,ATPase)上进行的。叶绿体内囊体膜上的ATP酶也称偶联因子(coupling factor)或CF1-CF0复合体。叶绿体的ATP酶与线粒体、细菌膜上的ATP酶结构十分相似,都由两个蛋白复合体组成:一个是突出于膜表面的亲水性的“CF1”;另一个是埋置于膜中的疏水性的“CF0”。ATP酶由九种亚基组成,分子量为550 000左右,催化的反应为磷酸酐键的形成,即把ADP和Pi合成ATP。另外ATP酶还可以催化逆反应,即水解ATP,并偶联H+向类囊体膜内运输。
  CF1的分子量约400 000,它含有α(60 000),β(56 000),γ(39 000),δ(19 000)和ε(14 000)的5种亚基。其中α亚基有结合核苷酸的部位,在进行催化时可能发生构象变化;β亚基是合成和水解ATP分子的催化位置;γ亚基控制质子的穿流;δ亚基也许与CF0的结合有关;ε亚基似乎能抑制CF1-CF0复合体在暗中的活性,防止ATP的水解。δ和ε亚基还有阻塞经CF0的质子泄漏的作用。 CF0含有四个亚基:Ⅰ、Ⅱ、Ⅲ和Ⅳ。Ⅲ是多聚体,可能含有12个多肽,总分子量为100 000。Ⅲ可能是CF0中质子转移的主要通道,而Ⅰ、Ⅱ、Ⅳ亚基的功能可能与建立质子转移通道或与结合CF1有关。
  当类囊体膜失去CF1后,就失去磷酸化功能,如果重新加进CF1即可恢复磷酸化功能。失去了CF1的类囊体膜会泄漏质子。但是一旦将CF1加回到膜上或是加进CF0的抑制剂后,质子泄漏就停止了。这表明CF0是质子的“通道”,供应质子给CF1去合成ATP。至于CF1如何利用H+越膜所释放的能量来合成ATP,美国的鲍易尔(Boyer 1993)认为,是H+浓度递度引起CF1上亚基的转动变构而催化ATP合成的。γ-亚基的转动引起β亚基的构象依紧绷(T)、松驰(L)和开放(O)的顺序变化,完成ADP和Pi的结合、 ATP的形成以及ATP的释放三个过程
  4.光合磷酸化的抑制剂 叶绿体进行光合磷酸化,必须:(1)类囊体膜上进行电子传递;(2)类囊体膜内外有质子梯度;(3)有活性的ATP酶。破坏这三个条件之一的试剂都能使光合磷酸化中止,这些试剂也就成了光合磷酸化的抑制剂。
  (1)电子传递抑制剂 指抑制光合电子传递的试剂,如羟胺(NH2OH)切断水到PSⅡ的电子流,DCMU抑制从PSⅡ上的Q到PQ的电子传递;KCN和Hg等则抑制PC的氧化。一些除草剂如西玛津(simazine)、阿特拉津(atrazine)、除草定(bromacil)、异草定(isocil)等也是电子传递抑制剂,它们通过阻断电子传递抑制光合作用来杀死植物。
v(2)解偶联剂 指解除磷酸化反应与电子传递之间偶联的试剂。常见的这类试剂有DNP(dinitrophenol,二硝基酚)、CCCP(carbonyl cyanide-3-chlorophenyl hydrazone,羰基氰-3-氯苯腙)、短杆菌肽D、尼日利亚菌素、NH+4等,这些试剂可以增加类囊体膜对质子的透性或增加偶联因子渗漏质子的能力,其结果是消除了跨膜的H+电化学势,而电子传递仍可进行,甚至速度更快(因为消除了内部高H+浓度对电子传递的抑制),但磷酸化作用不再进行。
  (3)能量传递抑制剂 指直接作用ATP酶抑制磷酸化作用的试剂,如二环己基碳二亚胺(DCCD)、对氯汞基苯(PCMB)作用于CF1,寡霉素作用于CF0(CF0 下标的o就是表明其对寡霉素oligomycin敏感)。它们都抑制了ATP酶活性从而阻断光合磷酸化。 

三、光反应中的光能转化效率
  光能转化效率是指光合产物中所贮存的化学能占光合作用所吸收的有效辐射能的百分率。光反应中,植物把光能转变成化学能贮藏在ATP和NADPH中。
  每形成1mol ATP需要约50kJ能量,每形成1mol NADPH便有2mol e-从0.82V(H2O/O2氧化还原电位)上升到-0.32V(NADPH电位)。这一过程的自由能变化为
  △G=-nF△E=-2×96.5×(-1.14)=220kJ
  如果按非环式电子传递,式(4-27)每吸收8mol光量子形成2molNADPH和3molATP来考虑,在光反应中吸收的能量按680nm波长的光计算,则8mol光量子的能量(E2)为:
  E2=hNC/λ×8=6.626×10-34J·s×6.023×1023×(3.0×108m·s-1/680×10-9m)×8 =1410kJ
  8 mol光子可转化成的化学能(E1)
  E1=220kJ×2+50kJ×3=590kJ
  能量转化率= (光反应贮存的化学能/吸收的光能= E1/E2=590kJ/1410kJ≈0.42=42%
  由此可见,光反应中光能转化效率还是较高的。 

C3途径(C3 pathway)、C4途径(C4 pathway)和CAM(景天科酸代谢,Crassulacean acid metabolism)途径编辑本段回目录

  植物利用光反应中形成的NADPH和ATP将CO2转化成稳定的碳水化合物的过程,称为CO2同化(CO2 assimilation)或碳同化。根据碳同化过程中最初产物所含碳原子的数目以及碳代谢的特点,将碳同化途径分为三类:C3途径(C3 pathway)、C4途径(C4 pathway)和CAM(景天科酸代谢,Crassulacean acid metabolism)途径。   
一、C3途径
  糖和淀粉等碳水化合物是光合作用的产物,这在100多年前就知道了,但其中的反应步骤和中间产物用一般的化学方法是难以测定的。因为植物体内原本就有很多种含碳化合物,无法辨认哪些是光合作用当时制造的,哪些是原来就有的。况且光合中间产物量很少,转化极快,难以捕捉。1946年,美国加州大学放射化学实验室的卡尔文(M.Calvin)和本森(A.Benson)等人采用了两项新技术:(1)14C同位素标记与测定技术(可排除原先存在于细胞里的物质干扰,凡被14C标记的物质都是处理后产生的);(2)双向纸层析技术(能把光合产物分开)。选用小球藻等单细胞的藻类作材料,藻类不仅在生化性质上与高等植物类似,且易于在均一条件下培养,还可在试验所要求的时间内快速地杀死。 

   经过10多年周密的研究,卡尔文等人终于探明了光合作用中从CO2到蔗糖的一系列反应步骤,推导出一个光合碳同化的循环途径,这条途径被称为卡尔文循环或卡尔文?本森循环。由于这条途径中CO2固定后形成的最初产物PGA为三碳化合物,所以也叫做C3途径或C3光合碳还原循环(C3 photosynthetic carbon reduction cycle, C3PCR循环),并把只具有C3途径的植物称为C3植物(C3 plant)。此项研究的主持人卡尔文获得了1961年诺贝尔化学奖。   (一)C3途径的反应过程

   C3途径是光合碳代谢中最基本的循环,是所有放氧光合生物所共有的同化CO2的途径。
   1.过程 由RuBP开始至RuBP再生结束,共有14步反应,均在叶绿体的基质中进行。全过程分为羧化、还原、再生3个阶段。
  (1)羧化阶段(carboxylation phase) 指进入叶绿体的CO2与受体RuBP结合,并水解产生PGA的反应过程(图4-17中的反应1)。以固定3分子CO2为例:
  3RuBP+3CO2+3H2O PGA + 6H+
  核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)具有双重功能,既能使RuBP与CO2起羧化反应,推动C3碳循环,又能使RuBP与O2起加氧反应而引起C2氧化循环即光呼吸(见本节二。光呼吸)。羧化阶段分两步进行,即羧化和水解:
  在Rubisco作用下RuBP的C-2位置上发生羧化反应形成2-羧基-3?酮基阿拉伯糖醇-1,5-二磷酸(2-carboxy-3-ketoarabinitol-1,5-bisphosphate, 3-keto-2CABP),它是一种与酶结合不稳定的中间产物,被水解后产生2分子PGA。
  Rubisco有活化与钝化两种形态,钝化型酶可被CO2和Mg2+ 激活,这种激活依赖于与酶活性中心有关的赖氨酸(Lys)的ε-NH2基反应。首先钝化型酶的ε-NH2与CO2(起活化的CO22不是底物CO2)作用,形成氨基甲酰化合物(E-NH·COO-),它与Mg2+ 作用形成活化型的酶(E-NH·COO·Mg2+ ,也称三元复合体ECM),然后底物RuBP和CO2再依次结合到活化型酶上进行羧化反应。

  Rubisco只有先与CO2、Mg2+作用才能成为活化型的ECM,如果先与RuBP(或RuBP类似物)结合,就会成为非活化型的E-RuBP。Rubisco活性还被叫做Rubisco活化酶(activase)的酶调节。在暗中钝化型Rubisco与RuBP结合形成E-RuBP后不能发生反应;在光下,活化酶由ATP活化,让RuBP与Rubisco解离,使Rubisco发生氨甲酰化,然后与CO2和、Mg2+结合形成ECM,促进RuBP的羧化。
  (2)还原阶段(reduction phase) 指利用同化力将3-磷酸甘油酸还原为甘油醛-3-磷酸的反应过程:
  6PGA+6ATP+6NADPH+ 6H+→→6GAP+6ADP+6NADP+ + 6Pi
  羧化反应产生的PGA是一种有机酸,要达到糖的能级,必须使用光反应中生成的同化力,ATP与NADPH能使PGA的羧基转变成GAP的醛基。当CO2被还原为GAP时,光合作用的贮能过程便基本完成。
  (3)再生阶段(regeneration phase) 指由甘油醛-3-磷酸重新形成核酮糖-1,-5-二磷酸的过程。
  5GAP+3ATP+2H2O→→→3RuBP+3ADP+2Pi+3H+
  这里包括形成磷酸化的3,4,5,6和7碳糖的一系列反应。最后由核酮糖-5-磷酸激酶(Ru5PK)催化,消耗1分子ATP,再形成RuBP。
  C3途径的总反应式可写成:
  3CO2+5H2O+9ATP+6NADPH→GAP+9ADP+8Pi+6NADP+ +3H+

  可见,每同化一个CO2需要消耗3个ATP和2个NADPH,还原3个CO2可输出1个磷酸丙糖(GAP或DHAP),固定6个CO2可形成1个磷酸己糖(G6P或F6P)。形成的磷酸丙糖可运出叶绿体,在细胞质中合成蔗糖或参与其它反应;形成的磷酸己糖则留在叶绿体中转化成淀粉而被临时贮藏。
  2.能量转化效率 以同化3个CO2形成1个磷酸丙糖为例。在标准状态下每形成1mol GAP贮能1460 kJ,每水解1mol ATP放能32 kJ,每氧化1mol NADPH放能220 kJ,则C3途径的能量转化效率为91% 〔1460/(32×9+220×6)〕,这是一个很高的值。然而在生理状态下 ,各种化合物的活度低于1.0,与上述的标准状态有差异,另外,要维持C3光合还原循环的正常运转,其本身也要消耗能量,因而一般认为,C3途径中能量的转化效率在80%左右。
  (二)C3途径的调节
  1.自(动)催化作用(autocatalysis) 植物同化CO2速率,很大程度上决定于光合碳还原循环的运转状态,以及光合中间产物的数量。暗中的叶片移至光下,最初固定CO2速率很低,需经过一个“滞后期”后才能达到光合速率的“稳态”阶段。其原因之一,是暗中叶绿体基质中的光合中间产物,尤其是RuBP的含量低。在C3途径中存在一种自动调节RuBP浓度的机制,即在RuBP含量低时,最初同化CO2形成的磷酸丙糖不输出循环,而用于RuBP的增生,以加快CO2固定速率,待光合碳还原循环到达“稳态”时,形成的磷酸丙糖再输出。这种调节RuBP等光合中间产物含量,使同化CO2速率处于某一“稳态”的机制,就称为C3途径的自(动)催化作用。
  2.光调节作用 光除了通过光反应对CO2同化提供同化力外,还调节着光合酶的活性。C3循环中的Rubisco、PGAK、GAPDH、FBPase,SBPase,Ru5PK都是光调节酶(图4-17中打圈处)。光下这些酶活性提高,暗中活性降低或丧失。光对酶活性的调节大体可分为两种情况,一种是通过改变微环境调节,另一种是通过产生效应物调节。
  (1)微环境调节 光驱动的电子传递使H+向类囊体腔转移,Mg2+ 则从类囊体腔转移至基质,引起叶绿体基质的pH从7上升到8,Mg2+浓度增加。较高的pH与Mg2+浓度使Rubisco光合酶活化。
  (2)效应物调节 一种假说是光调节酶可通过Fd-Td(铁氧还蛋白?硫氧还蛋白)系统调节。FBPase、GAPDH、Ru5PK等酶中含有二硫键(-S-S-),当被还原为2个巯基(-SH)时表现活性。光驱动的电子传递能使基质中Fd还原,进而使Td(硫氧还蛋白,thioredoxin)还原,被还原的Td又使FBPase和Ru5PK等酶的相邻半胱氨酸上的二硫键打开变成2个巯基,酶被活化。在暗中则相反,巯基氧化形成二硫键,酶失活。
  3.光合产物输出速率的调节 根据质量作用定律,产物浓度的增加会减慢化学反应的速度。磷酸丙糖是能运出叶绿体的光合产物,而蔗糖是光合产物运出细胞的运输形式。磷酸丙糖通过叶绿体膜上的Pi运转器运出叶绿体,同时将细胞质中等量的Pi运入叶绿体。磷酸丙糖在细胞质中被用于合成蔗糖,同时释放Pi。如果蔗糖的外运受阻,或利用减慢,则其合成速度降低,随之Pi的释放减少,而使磷酸丙糖外运受阻。这样,磷酸丙糖在叶绿体中积累,从而影响C3光合碳还原环的正常运转。另外,叶绿体的Pi浓度的降低也会抑制光合磷酸化,使ATP不能正常合成,这又会抑制Rubisco活化酶活性和需要利用ATP的反应。 
二、光呼吸
  植物的绿色细胞在光照下有吸收氧气,释放CO2的反应,由于这种反应仅在光下发生,需叶绿体参与,并与光合作用同时发生,故称作为光呼吸(photorespiration)。
  (一)光呼吸的发现
  1920年瓦伯格在用小球藻做实验时发现,O2对光合作用有抑制作用,这种现象被称为瓦伯格效应(Warburg effect)。这实际上是氧促进光呼吸的缘故。
  1955年德克尔(J.P.Decher)用红外线CO2气体分析仪测定烟草光合速率时,观察到对正在进行光合作用的叶片突然停止光照,断光后叶片有一个CO2快速释放(猝发)过程。CO2猝发(CO2 outburst)现象实际上是光呼吸的“余辉”,即在光照下所形成的光呼吸底物尚未立即用完,在断光后光呼吸底物的继续氧化。现在通常把1955年作为发现光呼吸的年代。1971年托尔伯特(Tolbert)阐明了光呼吸的代谢途径。
  (二)光呼吸的生化途径
  现在认为光呼吸的生化途径是乙醇酸(glycolate)的代谢,主要证据:(1)14CO2能掺入到乙醇酸中去,而且光下能检测到光呼吸释放的14CO2来自14C乙醇酸;(2) 18O2能掺入到乙醇酸以及甘氨酸与丝氨酸的羧基上;(3)增进光呼吸的因素,如高O2、高温等也能刺激乙醇酸的合成与氧化。乙醇酸的生成反应是从Rubisco加氧催化的反应开始的。    通常认为,乙醇酸的代谢要经过三种细胞器:叶绿体、过氧化体和线粒体。整个生化过程如图4-21所示。乙醇酸从叶绿体转入过氧化体,由乙醇酸氧化酶催化氧化成乙醛酸,这个过程中生成的H2O2在过氧化氢酶的催化下分解成H2O和O2。乙醛酸经转氨作用转变为甘氨酸,甘氨酸在进入线粒体后发生氧化脱羧和羟甲基转移反应转变为丝氨酸,丝氨酸再转回过氧化体,并发生转氨作用,转变为羟基丙酮酸,后者还原为甘油酸,转入叶绿体后,在甘油酸激酶催化下生成的3-磷酸甘油酸又进入C3途径,整个过程构成一个循环。其中耗氧反应部位有两处,一是叶绿体中的Rubisco加氧反应,二是过氧化体中的乙醇酸氧化反应。脱羧反应则在线粒体中进行,2个甘氨酸形成1个丝氨酸时脱下1分子CO2。从RuBP到PGA的整个反应总方程式为:
  RuBP+15O2+11H2O+34ATP+15NADPH+10FdRED 5CO2+34ADP+36Pi+15NADP++10FdOX+9H+
  因为光呼吸底物乙醇酸和其氧化产物乙醛酸,以及后者经转氨作用形成的甘氨酸皆为C2化合物,因此光呼吸途径又称为C2光呼吸碳氧化循环(C2photorespiration carbon oxidation cycle, PCO循环),简称C2循环。
  (三)光呼吸与“暗呼吸”的区别 

  光呼吸需在光下进行,而一般的呼吸作用,光下与暗中都能进行,所以相对光呼吸而言,一般的呼吸作用被称作“暗呼吸”(dark respiration)。两者主要区别见表4-3。另外光呼吸速率也要比“暗呼吸”速率高3~5倍。
  (四)光呼吸的意义
  从碳素角度看,光呼吸往往将光合作用固定的20%~40%的碳变为CO2放出(C3植物);从能量角度看,每释放1分子CO2需消耗6.8个ATP,3个NADPH和2个高能电子[据式(4-39)算],显然,光呼吸是一种浪费。那么,在长期的进化历程中光呼吸为什么未被消除掉?这可能与Rubisco的性质有关。Rubisco自身不能区别CO2和O2,它既可催化羧化反应,又可以催化加氧反应,即CO2和O2竞争Rubisco同一个活性部位,并互为加氧与羧化反应的抑制剂。Rubisco是进行羧化还是加氧,取决于外界CO2浓度与O2浓度的比值。在人为提供相同浓度CO2和O2的条件下,Rubisco的羧化活性是加氧活性的80倍。在产生绿色植物光合作用的最初阶段,大气中CO2/O2的比值很高,加氧酶活性被抑制,但随着绿色植物光合作用的进行,大气中CO2/O2比值逐渐降低,加氧酶活性就表现出来。在25℃下,与空气平衡的水溶液中CO2/O2的比值为0.0416,这时羧化作用与加氧作用的比值约为3∶1。既然在空气中绿色植物的光呼吸是不可避免的,那它在生理上有什么意义呢?推测如下:
  1.回收碳素 通过C2碳氧化环可回收乙醇酸中3/4的碳(2个乙醇酸转化1个PGA,释放1个CO2)。
  2.维持C3光合碳还原循环的运转 在叶片气孔关闭或外界CO2浓度低时,光呼吸释放的CO2能被C3途径再利用,以维持光合碳还原循环的运转。
  3.防止强光对光合机构的破坏作用 在强光下,光反应中形成的同化力会超过CO2同化的需要,从而使叶绿体中NADPH/NADP、ATP/ADP的比值增高。同时由光激发的高能电子会传递给O2,形成的超氧阴离子自由基O-·2会对光合膜、光合器有伤害作用,而光呼吸却可消耗同化力与高能电子,降低O-·2的形成,从而保护叶绿体,免除或减少强光对光合机构的破坏。
  4.消除乙醇酸 乙醇酸对细胞有毒害,光呼吸则能消除乙醇酸,使细胞免遭毒害。另外,光呼吸代谢中涉及多种氨基酸的转变,这可能对绿色细胞的氮代谢有利。C3植物中有光呼吸缺陷的突变体在正常空气中是不能存活的,只有在高CO2浓度下(抑制光呼吸)才能存活,这也说明在正常空气中光呼吸是一个必需的生理过程。 
三、C4途径
  (一)C4途径的发现
  自20世纪50年代卡尔文等人阐明C3途径以来,曾认为光合碳代谢途径已经搞清楚了,不管是藻类还是高等植物,其CO2固定与还原都是按C3途径进行的。即使在1954年,哈奇(M.D.Hatch)等人用甘蔗叶实验,发现甘蔗叶片中有与C3途径不同的光合最初产物,亦未受到应有的重视。直到1965年,美国夏威夷甘蔗栽培研究所的科思谢克(H.P.Kortschak)等人报道,甘蔗叶中14C标记物首先出现于C4二羧酸,以后才出现在PGA和其他C3途径中间产物上,而且玉米、甘蔗有很高的光合速率,这时才引起人们广泛的注意。澳大利亚的哈奇和斯莱克(C.R.Slack)(1966-1970)重复上述实验,进一步地追踪14C去向,探明了14C固定产物的分配以及参与反应的各种酶类,于70年代初提出了C4-双羧酸途径(C4-dicarboxylic acid pathway),简称C4途径,也称C4光合碳同化循环(C4 photosynthetic carbon assimilation cycle,PCA循环),或叫Hatch-Slack途径。至今已知道,被子植物中有20多个科约近2000种植物按C4途径固定CO2,这些植物被称为C4植物(C4 plant)。
  (二)C4植物叶片结构特点
  与C3植物相比,C4植物的栅栏组织与海绵组织分化不明显,叶片两侧颜色差异小。C3植物的光合细胞主要是叶肉细胞(mesophyll cell ,MC),而C4植物的光合细胞有两类:叶肉细胞和维管束鞘细胞(bundle sheath cell,BSC)。C4植物维管束分布密集,间距小(通常每个MC与BSC邻接或仅间隔1个细胞),每条维管束都被发育良好的大型BSC包围,外面又密接1-2层叶肉细胞,这种呈同心圆排列的BSC与周围的叶肉细胞层被称为“花环”(Kranz德语)结构,(图4-22)。C4植物的BSC中含有大而多的叶绿体,线粒体和其它细胞器也较丰富。BSC与相邻叶肉细胞间的壁较厚,壁中纹孔多,胞间连丝丰富。这些结构特点有利于MC与BSC间的物质交换,以及光合产物向维管束的就近转运。
  此外,C4植物的两类光合细胞中含有不同的酶类,叶肉细胞中含有磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase,PEPC)以及与C4二羧酸生成有关的酶;而BSC中含有Rubisco等参与C3途径的酶、乙醇酸氧化酶以及脱羧酶。在这两类细胞中进行不同的生化反应。
  (三)C4途径的反应过程
  C4途径中的反应虽因植物种类不同而有差异,但基本上可分为羧化、还原或转氨、脱羧和底物再生四个阶段。 
  根据植物所形成的C4二羧酸的种类以及脱羧反应参与的酶类,又可把C4途径分为三种亚类型:①依赖NADP的苹果酸酶(NADP malic enzyme)的苹果酸型(NADP-ME型);②依赖NAD的苹果酸酶(NAD malic enzyme)的天冬氨酸型(NAD-ME型);③具有PEP羧激酶(PEP carboxykinase)的天冬氨酸型(PCK型)。NADP-ME型初期产物为Mal,而NAD-ME型与PCK型初期产物为Asp(图4-23)。这三种亚类型植物叶绿体的结构及其在BSC中的排列有所不同。就禾本科植物而言,NAD?ME型植物,叶绿体在BSC中向心排列,而NADP-ME与PCK型,叶绿体在BSC中离心排列;另外NADP-ME型BSC中叶绿体的基粒不发达,PSⅡ活性低。 
  1.羧化阶段 由PEPC催化叶肉细胞中的磷酸烯醇式丙酮酸(phosphoenol plyruvate,PEP)与HCO3-羧化,形成OAA。
  空气中的CO2进入叶肉细胞后先由碳酸酐酶 (carbonic anhydrase,CA)转化为HCO-3, CO2 +H2O → HCO-3 + H+。HCO-3被PEP固定在OAA的C4羧基上,PEPC的反应机理如下:(1)PEPC先与Mg2+结合;(2)再与底物PEP结合,形成一个三元复合物;(3)这个三元复合物与HCO-3作用产生羧基磷酸与PEPC·Mg2+ 和烯醇式丙酮酸复合物,前者释放出CO2与Pi;(4)CO2与PEPC·Mg2+·烯醇作用产生OAA与PEPC·Mg2+ ,OAA为羧化反应的产物,PEPC·Mg2+ 则再次进行反应。PEPC是胞质酶,主要分布在叶肉细胞的细胞质中,分子量400 000,由四个相同亚基组成。PEPC无加氧酶活性,因而羧化反应不被氧抑制。
  2.还原或转氨阶段 OAA被还原成苹果酸或经转氨作用形成天冬氨酸。
  (1)还原反应 由NADP-苹果酸脱氢酶(NADP-malate dehydrogenase)催化,将OAA还原为Mal,该反应在叶肉细胞的叶绿体中进行。苹果酸脱氢酶为光调节酶,可通过Fd-Td系统调节其活性。
  (2)转氨作用 由天冬氨酸转氨酶(aspartate amino transferase)催化,OAA接受谷氨酸的NH2基,形成天冬氨酸,该反应在细胞质中进行。
  3.脱羧阶段 生成的苹果酸或天冬氨酸从叶肉细胞经胞间连丝移动到BSC,在那里脱羧。
  三种亚类型(图4-23)的脱羧反应如下:
  (1)NADP ME型 在BSC的叶绿体内苹果酸脱羧生成丙酮酸(pyruvate,Pyr),反应由NADP苹果酸酶催化,生成的NADPH可用于C3途径中CO2的还原。
  (2)NAD-ME型 天冬氨酸经天冬氨酸转氨酶作用下转氨基形成OAA,再经NAD-苹果酸脱氢酶作用下生成苹果酸,然后在NAD-苹果酸酶催化下脱羧生成丙酮酸并释放CO2,这些过程都在BSC的线粒体中进行,生成的丙酮酸在细胞质中由丙酮酸转氨酶催化形成丙氨酸,然后进入叶肉细胞。
  (3)PCK型 天冬氨酸经天冬氨酸转氨酶作用变成草酰乙酸,然后再在PEP羧激酶的催化下变为PEP并释放CO2。
  生成的PEP可能直接进入叶肉细胞,也可能先转变成丙酮酸,再形成丙氨酸进入叶肉细胞。上述三类反应脱羧释放的CO2都进入BSC的叶绿体中,由C3途径同化。
  C4二羧酸脱羧释放CO2,使BSC内CO2浓度可比空气中高出20倍左右,所以C4途径中的脱羧起“CO22泵”作用。C4植物这种浓缩CO2的效应,能抑制光呼吸,使CO2同化速率提高。
  4.底物再生阶段 C4二羧酸脱羧后形成的Pyr运回叶肉细胞,由叶绿体中的丙酮酸磷酸二激酶(pyruvate phosphate dikinase,PPDK)催化,重新形成CO2受体PEP。NAD-ME型和PCK型形成的丙氨酸在叶肉细胞中先转为丙酮酸,然后再生成PEP。
  此步反应要消耗2个ATP(因AMP变成ADP再要消耗1个ATP)。PPDK在体内存在钝化与活化两种状态,它易被光活化,光下该酶的活性比暗中高20倍。
  由于PEP底物再生要消耗2个ATP,这使得C4植物同化1个CO2需消耗5个ATP与2个NADPH。
  (四)C4途径的意义
  C4植物起源于热带,在强光、高温及干燥的气候条件下,C4植物的光合速率要远大于C3植物。气候干燥时,叶片气孔的开度变小,进入叶肉的CO2也随之减少,这就限制了Rubisco的羧化活性;气温高时,CO2和O2在水中的溶解度虽均降低,但CO2溶解度降低得更迅速,这样细胞液中CO2/O2的比值也降低,从而使得Rubisco的加氧活性升高,而羧化活性下降。在这些情况下,C3植物的光呼吸增强。但C4植物的叶肉细胞中的PEPC对底物HCO-3的亲和力极高,细胞中的HCO3-浓度一般不成为PEPC固定CO2的限制因素;C4植物由于有“CO22泵”浓缩CO2的机制,使得BSC中有高浓度的CO2,从而促进Rubisco的羧化反应,降低了光呼吸,且光呼吸释放的CO2又易被再固定;加之高光强又可推动电子传递与光合磷酸化,产生更多的同化力,以满足C4植物PCA循环对ATP的额外需求;另外,鞘细胞中的光合产物可就近运入维管束,从而避免了光合产物累积对光合作用可能产生的抑制作用。这些都使C4植物可以具有较高的光合速率。但是C4植物同化CO2消耗的能量比C3植物多,也可以说这个“CO22泵”是要由ATP来开动的,故在光强及温度较低的情况下,其光合效率还低于C3植物。只是在高温、强光、干旱和低CO2条件下,C4植物才显示出高的光合效率来。可见C44途径是植物光合碳同化对热带环境的一种适应方式。
  (五) C4途径的调节
  C4途径是一个极其复杂的生化过程,其运行跨越不同的细胞及细胞器,参与反应的酶类多,因此各环节的协调是十分重要的,以下仅介绍较明确的一些调节。
  1.酶活性的调节 C44途径中的PEPC、NADP?苹果酸脱氢酶和丙酮酸磷酸二激酶(PPDK)都在光下活化,暗中钝化。NADP-苹果酸脱氢酶的活性通过Fd-Td系统调节,而PEPC和PPDK的活性通过酶蛋白的磷酸化?脱磷酸反应来调节。
  磷酸化反应是由一类ATP-磷酸转移酶所催化的反应,这类酶通称为蛋白激酶;脱磷酸反应则是由一类磷酸酯酶所催化的反应。蛋白的磷酸化或脱磷酸反应是在组成其多肽链的丝氨酸(Ser)、组氨酸(His)、苏氨酸(Thr)等氨基酸残基上进行的。当PEPC上某一Ser被磷酸化时,PEPC就活化,对底物PEP的亲和力就增加,脱磷酸时PEPC就钝化。玉米、高粱等C4植物中的PEPC虽然在光暗下都能发生磷酸化,但光下磷酸化程度要大于暗中,因而C4植物的PEPC光下活性高。 

  PPDK活性被磷酸化的调节机理与PEPC不同。PPDK在被磷酸化时钝化,不能催化由Pyr再生PEP的反应,而在脱磷酸时活化。催化PPDK磷酸化和脱磷酸的酶是同一分子的蛋白因子,叫丙酮酸二激酶调节蛋白(PDRP),至于光是如何诱导PDRP调节PPDK活性的,至今还不清楚。
  PEPC与PPDK的活性还受代谢物的调节。通常是底物促进酶的活性,产物抑制酶的活性,如 PEPC的活性被PEP以及产生PEP的底物G6P、F6P、FBP所激活,而被OAA、Mal、Asp等产物反馈抑制;PPDK的活性在底物ATP、Pi和Pyr相对浓度高时提高,然而该酶不受底物PEP相对浓度所影响。   

  2.光对酶量的调节 光提高光合酶活性的原因之一是光能促进光合酶的合成。前已提到Rubisco的合成受光控制,PEPC的合成也受光照诱导,如玉米、高粱黄化叶片经连续照光后,PEPC的活性提高,同时〔3H〕-亮氨酸掺入到酶蛋白的数量增加,应用蛋白合成抑制剂、放线菌素D和光合电子传递抑制剂DCMU所得资料表明,光引起PEPC活性的增高与光合电子传递无关(不被DCMU抑制),而与酶蛋白的合成有关(被放线菌素D抑制)。光对NADP苹果酸酶的形成也有类似影响。
  3.代谢物运输 C4途径的生化反应涉及两类光合细胞和多种细胞器,维持有关代谢物在细胞间、细胞器间快速运输,保持鞘细胞中高的CO2浓度就显得非常重要。
  在C4植物叶肉细胞的叶绿体被膜上有一些特别的运转器,如带有PEP载体的磷运转器,它能保证丙酮酸、Pi与PEP、PGA与DHAP间的对等交换;专一性的OAA运转器能使叶绿体内外的OAA与Mal快速交换,以维持C4代谢物运输的需要。
  前已提到,C4植物鞘细胞与相邻叶肉细胞的壁较厚,且内含不透气的脂层;壁中纹孔多,其中富含胞间连丝。由于共质体运输阻力小,使得光合代谢物在叶肉细胞和维管束鞘细胞间的运输速率增高。由于两细胞间的壁不透气,使得脱羧反应释放的CO2不易扩散到鞘细胞外去。据测定,C4植物叶肉细胞-单鞘细胞间壁对光合代谢物的透性是C3植物的10倍,而CO2的扩散系数仅为C3光合细胞的1/100。维持维管束鞘细胞内的高CO2浓度有利于C3途径的运行,同时也会反馈调节C4途径中的脱羧反应。因此,C3途径同化CO2的速率以及光合产物经维管束向叶外输送的速率都会影响到整个途径的运行。   
四、景天科酸代谢途径
  (一)CAM在植物界的分布与特征
  景天科等植物有一个很特殊的CO2同化方式:夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,用于光合作用,这样的与有机酸合成日变化有关的光合碳代谢途径称为CAM途径。CAM最早是在景天科植物中发现的,目前已知在近30个科,1万多个种的植物中有CAM途径,主要分布在景天科、仙人掌科、兰科、凤梨科、大戟科、番杏科、百合科、石蒜科等植物中。其中凤梨科植物达1千种以上,兰科植物达数千种,此外还有一些裸子植物和蕨类植物。CAM植物起源于热带,往往分布于干旱的环境中,多为肉质植物(succulent plant),具有庞大的贮水组织,肉质植物不一定都是常见的CAM植物有菠萝、剑麻、兰花、百合、仙人掌等。
  CAM途径主要反应是两类羧化反应。即在黑暗中进行PEPC的羧化反应和在光下进行Rubisco的羧化反应,与此相伴随的是由PEP羧化生成草酰乙酸并进一步还原为苹果酸的酸化作用(acidification)和由苹果酸释放CO2的脱羧作(decarboxylation)。
  CAM植物与C4植物固定与还原CO2的途径基本相同,二者的差别在于:C4植物是在同一时间(白天)和不同的空间(叶肉细胞和维管束鞘细胞)完成CO2固定(C4途径)和还原(C3途径)两个过程;而CAM植物则是在不同时间(黑夜和白天)和同一空间(叶肉细胞)完成上述两个过程的。
  CAM植物由于白天气孔关闭、苹果酸脱羧、细胞间的CO2/O2比例高、以及CO2再固定率高,因而表观光呼吸速率较低。   
五、C3、C4、CAM植物的特性比较及鉴别
  (一)C3、C4、CAM植物的特性比较及鉴别
  1.特性比较 C3植物,C4植物和CAM植物的光合作用与生理生态特性有较大的差异。
  2.鉴别方法 介绍几种判断的方法:   

  (1)从碳同位素比上划分 是一种常用于植物碳代谢分类的测定方法。所谓碳同位素比是指样品与标样(美洲拟箭石,一种古生物化石,其13C/12C为1.16‰)之间碳同位素比值的相对差异,以δ13C(‰)表示:
  δ13C(‰)=〔 (试样的) 13C/12C (标样的)13C/12C -1〕×1000
  碳同位素比可作为碳代谢分类的方法,是基于各类植物对12C与13C的亲和力不同。C3植物的Rubisco是以CO2为底物,固定12C比13C要容易些,C4植物的PEPC则是以HCO3-为底物,固定12C和13C的速率基本相等。
  将植物体燃烧释放出来的CO2分别按12CO2和13CO2进行定量分析,测定的结果,C3植物的δ13C为-35‰~-24‰,C4植物为-17‰~-11‰,CAM植物为-34‰~-13‰。无论是用干燥的植物或是植物体化石,只需取极少量的样品就能测定δ13C(‰)
  (2)从植物进化上区分 C3植物较原始,C4植物较进化。蕨类和裸子植物中就没有C4植物,只有被子植物中才有C4植物。同样,木本植物中还未发现C4植物,只有草本植物  (3)从分类学上区分 C4植物多集中在单子叶植物的禾本科中,约占C4植物总数的75%,其次为莎草科。世界上危害最严重的18种农田杂草有14种是C4植物,它们生长得快,具有很强的竞争优势。例如稗草、香附子、狗牙根、狗尾草、马唐、蟋蟀草等都是C4植物。双子叶植物中C4植物多分布于藜科、大戟科、苋科和菊科等十几个科中。而豆科、十字花科、蔷薇科、茄科和葫芦科中都未出现过C4植物。
  (4)从地理分布上区分 由于C3植物生长的适宜温度较低,而C4植物生长的适宜温度较高,因而在热带和亚热带地区C4植物相对较多,而在温带和寒带地区C3植物相对较多。在北方早春开始生长的植物几乎全是C3植物,直至夏初才出现C4的植物。CAM植物主要分布在干旱、炎热的沙漠沙滩地区。
  (5)从植物外形上区分 由于C3植物栅栏组织和海绵组织分化明显,叶片背腹面颜色就不一致,而C4植物分化不明显,叶背腹面颜色就较一致,多为深绿色。C3植物BSC不含叶绿体,外观上叶脉是淡色的,而C4植物BSC含有叶绿体,叶脉就显现绿色。另外,C3植物叶片上小叶脉间的距离较大,而C4植物小叶脉间的距离较小。若从外观上断定是C3植物,毫无疑问它的内部结构也属于C3植物。若从外观上断定是C4植物,不妨再作一下叶片的镜检,是否具有花环结构,测一下CO2补偿点或光下向无CO2气体中的CO2释放量(光呼吸速率)。通常C4植物的这两个测定值都较低。
  一般CAM植物是多肉型的,往往具有角质层厚、气孔下陷等旱生特征。景天科植物中的景天、落地生根、费草、瓦松、石莲花等的叶子较厚,可贮藏水分,叶面上有蜡质层,且多半能由一段茎或一片叶子长成一个植物体。另外,CAM植物的生长量大多很低。
  (二)C3、C4、CAM植物的相互关系
  从生物进化的观点看,C4植物和CAM植物是从C3植物进化而来的。在陆生植物出现的初期,大气中CO2浓度较高,O2较少,光呼吸受到抑制,故C3途径能有效地发挥作用。随着植物群体的增加,O2浓度逐渐增高,CO2浓度逐渐降低,一些长期生长在高温、干燥气候下的植物受生态环境的影响,也逐渐发生了相应的变化。如出现了花环结构,叶肉细胞中的PEPC和磷酸丙酮酸二激酶含量逐步增多,形成了有浓缩CO2机制的C4-二羧酸循环,形成了C3-C4中间型植物乃至C4植物,或者形成了白天气孔关闭,抑制蒸腾作用,晚上气孔开启,吸收CO2的CAM植物。不过,不论是哪一种光合碳同化类型的植物,都具有C3途径,这是光合碳代谢的基本途径。C4途径、CAM途径以及光呼吸途径只是对C3途径的补充。也由于长期受环境的影响,使得在同一科属内甚至在同一植物中可以具有不同的光合碳同化途径。例如禾本科黍属的56个种内有C4植物种47个,C3植物种8个,C4中间类型1个;在大戟属和碱蓬属内,则同时包括C3、C4和CAM植物。禾本科的毛颖草在低温多雨地区为C3植物,而在高温少雨地区为C4植物。C3植物感病时往往会出现C4植物的特征,如C3植物烟草感染花叶病毒后,PEPC代替了被抑制了的Rubisco,在幼叶中出现了C4途径。玉米幼苗叶片具有C3特征,至第五叶才具有完全的C4特性。C4植物衰老时,会出现C3植物的特征。也有一些肉质植物在水分胁迫条件下由C4途径转变为CAM途径。CAM植物则有专性和兼性之分。
  总之,不同碳代谢类型之间的划分不是绝对的,它们在一定条件下可互相转化,这也反映了植物光合碳代谢途径的多样性、复杂性以及在进化过程中植物表现出的对生态环境的适应性。 

影响光合作用的因素编辑本段回目录

  植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。  
一、光合速率及表示单位
  光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2·m-2·s-1 (以前用mg·dm-2·h-1表示,1μmol·m-2·s-1=1.58mg·dm-2·h-1)、μmol O2·dm-2·h-1 和mgDW(干重)·dm-2·h-1。CO2吸收量用红外线CO2气体分析仪测定,O2释放量用氧电极测氧装置测定,干物质积累量可用改良半叶法等方法测定(请参照植物生理实验指导书)。有的测定光合速率的方法都没有把呼吸作用(光、暗呼吸)以及呼吸释放的CO2被光合作用再固定等因素考虑在内,因而所测结果实际上是表观光合速率(apparent photosynthetic rate)或净光合速率(net photosynthetic rate,Pn),如把表观光合速率加上光、暗呼吸速率,便得到总光合速率(gross photosyntheticrate)或真光合速率(true photosynthetic rate)。 
二、内部因素
  (一)叶片的发育和结构 

  1.叶龄 新长出的嫩叶,光合速率很低。其主要原因有:(1)叶组织发育未健全,气孔尚未完全形成或开度小,细胞间隙小,叶肉细胞与外界气体交换速率低;(2)叶绿体小,片层结构不发达,光合色素含量低,捕光能力弱;(3)光合酶,尤其是Rubisco的含量与活性低。(4)幼叶的呼吸作用旺盛,因而使表观光合速率降低。但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,光合速率不断上升;当叶片长至面积和厚度最大时,光合速率通常也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降。
  依据光合速率随叶龄增长出现“低—高—低”的规律,可推测不同部位叶片在不同生育期的相对光合速率的大小。如处在营养生长期的禾谷类作物,其心叶的光合速率较低,倒3叶的光合速率往往最高;而在结实期,叶片的光合速率应自上而下地衰减。
  2.叶的结构 叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一方面受遗传因素控制,另一方面还受环境影响。
  C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。许多植物的叶组织中有两种叶肉细胞,靠腹面的为栅栏组织细胞;靠背面的为海绵组织细胞。栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。生长在光照条件下的阳生植物(sun plant)叶栅栏组织要比阴生植物(shade plant)叶发达,叶绿体的光合特性好,因而阳生叶有较高的光合速率。
  同一叶片,不同部位上测得的光合速率往往不一致。例如,禾本科作物叶尖的光合速率比叶的中下部低,这是因为叶尖部较薄,且易早衰的缘故。
  (二)光合产物的输出
  光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。例如,摘去花、果、顶芽等都会暂时阻碍光合产物输出,降低叶片特别是邻近叶的光合速率;反之,摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率会急剧增加,但易早衰。对苹果等果树枝条环割,由于光合产物不能外运,会使环割上方枝条上的叶片光合速率明显下降。光合产物积累到一定的水平后会影响光合速率的原因有:(1)反馈抑制。例如蔗糖的积累会反馈抑制合成蔗糖的磷酸蔗糖合成酶sucrose phosphate synthetase,SPS)的活性,使F6P增加。而F6P的积累,又反馈抑制果糖1,6-二磷酸酯酶活性,使细胞质以及叶绿体中磷酸丙糖含量增加,从而影响CO2的固定;(2)淀粉粒的影响。叶肉细胞中蔗糖的积累会促进叶绿体基质中淀粉的合成与淀粉粒的形成,过多的淀粉粒一方面会压迫与损伤类囊体,另一方面,由于淀粉粒对光有遮挡,从而直接阻碍光合膜对光的吸收。   
三 外部因素
  (一)光照
  光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。
  1.光强
  (1)光强-光合曲线  暗中叶片不进行光合作用,只有呼吸作用释放CO2。随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点(light compensation point)。在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点(light saturation point),此点以后的阶段称饱和阶段(直线C)。比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2扩散和固定速率是主要限制因素。用比例阶段的光强-光合曲线的斜率(表观光合速率/光强)可计算表观光合量子产额。 

  不同植物的光强-光合曲线不同,光补偿点和光饱和点也有很大的差异。光补偿点高的植物一般光饱和点也高,草本植物的光补偿点与光饱和点通常要高于木本植物;阳生植物的光补偿点与光饱和点要高于阴生植物;C4植物的光饱和点要高于C3植物。光补偿点和光饱和点可以作为植物需光特性的主要指标,用来衡量需光量。光补偿点低的植物较耐阴,如大豆的光补偿点仅0.5klx,所以可与玉米间作,在玉米行中仍能正常生长。在光补偿点时,光合积累与呼吸消耗相抵消,如考虑到夜间的呼吸消耗,则光合产物还有亏空,因此从全天来看,植物所需的最低光强必须高于光补偿点。对群体来说,上层叶片接受到的光强往往会超过光饱和点,而中下层叶片的光强仍处在光饱和点以下,如水稻单株叶片光饱和点为40~50klx,而群体内则为60~80lx,因此改善中下层叶片光照,力求让中下层叶片接受更多的光照是高产的重要条件。
  植物的光补偿点和光饱和点不是固定数值,它们会随外界条件的变化而变动,例如,当CO2浓度增高或温度降低时,光补偿点降低;而当CO2浓度提高时,光饱和点则会升高。在封闭的温室中,温度较高,CO2较少,这会使光补偿点提高而对光合积累不利。在这种情况下应适当降低室温,通风换气,或增施CO2才能保证光合作用的顺利进行。
  在一般光强下,C4植物不出现光饱和现象,其原因是:①C4植物同化CO2消耗的同化力要比C3植物高 ②PEPC对CO2的亲和力高,以及具有“CO2泵”,所以空气中CO2浓度通常不成为C4植物光合作用的限制因素。
  (2)强光伤害—光抑制 光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制(photoinhibition of photosynthesis)。
  晴天中午的光强常超过植物的光饱和点,很多C3植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。当强光与高温、低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。通常光饱和点低的阴生植物更易受到光抑制危害,若把人参苗移到露地栽培,在直射光下,叶片很快失绿,并出现红褐色灼伤斑,使参苗不能正常生长;大田作物由光抑制而降低的产量可达15%以上。因此光抑制产生的原因及其防御系统引起了人们的重视。
  光抑制机理 一般认为光抑制主要发生在PSⅡ。按其发生的原初部位可分为受体侧光抑制和供体侧光抑制。受体侧光抑制常起始于还原型QA的积累。还原型QA的积累促使三线态P680(P680T)的形成,而P680T可以与氧作用(P680T +O2→P680 + 1O2)形成单线态氧(?1O2);供体侧光抑制起始于水氧化受阻。由于放氧复合体不能很快把电子传递给反应中心,从而延长了氧化型P680(P680+)的存在时间。P680+和?1O2都是强氧化剂,如不及时消除,它们都可以氧化破坏附近的叶绿素和D1蛋白,从而使光合器官损伤,光合活性下降。
  保护机理 植物有多种保护防御机理,用以避免或减少光抑制的破坏。如:(1)通过叶片运动,叶绿体运动或叶表面覆盖蜡质层、积累盐或着生毛等来减少对光的吸收;(2)通过增加光合电子传递和光合关键酶的含量及活化程度,提高光合能力等来增加对光能的利用;(3)加强非光合的耗能代谢过程,如光呼吸、Mehler反应等;(4)加强热耗散过程,如蒸腾作用;(5)增加活性氧的清除系统,如超氧物歧化酶(SOD)、谷胱甘肽还原酶等的量和活性;(6)加强PSⅡ的修复循环等。
  光抑制引起的破坏与自身的修复过程是同时发生的,两个相反过程的相对速率决定光抑制程度和对光抑制的忍耐性。光合机构的修复需要弱光和合适的温度,以及维持适度的光合速率,并涉及到一些物质如D1等蛋白的合成。如果植物连续在强光和高温下生长,那么光抑制对光合器的损伤就难以修复了。

  在作物生产上,保证作物生长良好,使叶片的光合速率维持较高的水平,加强对光能的利用,这是减轻光抑制的前提。同时采取各种措施,尽量避免强光下多种胁迫的同时发生,这对减轻或避免光抑制损失也是很重要的。另外,强光下在作物上方用塑料薄膜遮阳网或防虫网等遮光,能有效防止光抑制的发生,这在蔬菜花卉栽培中已普遍应用。
  2.光质 在太阳幅射中,只有可见光部分才能被光合作用利用。用不同波长的可见光照射植物叶片,测定到的光合速率(按量子产额比较)不一样。在600~680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。可见,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。
  在自然条件下,植物或多或少会受到不同波长的光线照射。例如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低。“大树底下无丰草”就是这个道理。
  水层同样改变光强和光质。水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适应的一种表现。
  3.光照时间 对放置于暗中一段时间的材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升并趋与稳定。从照光开始至光合速率达到稳定水平的这段时间,称为“光合滞后期”(lag phase of photosynthesis)或称光合诱导期。一般整体叶片的光合滞后期约30~60min,而排除气孔影响的去表皮叶片,细胞、原生质体等光合组织的滞后期约10min。将植物从弱光下移至强光下,也有类似情况出现。另外,植物的光呼吸也有滞后现象。在光合的滞后期中光呼吸速率与光合速率会按比例上升(图4-29)。
  产生滞后期的原因是光对酶活性的诱导以及光合碳循环中间产物的增生需要一个准备过程,而光诱导气孔开启所需时间则是叶片滞后期延长的主要因素。
  由于照光时间的长短对植物叶片的光合速率影响很大,因此在测定光合速率时要让叶片充分预照光。 

  (二)CO2
  1.CO2-光合曲线 CO2-光合曲线与光强光合曲线相似,有比例阶段与饱和阶段。光下CO2浓度为零时叶片只有光、暗呼吸,释放CO2。图中的OA部分为光下叶片向无CO2气体中的CO2释放速率(实质上是光呼吸、暗呼吸、光合三者的平衡值),通常用它来代表光呼吸速率。在比例阶段,光合速率随CO2浓度增高而增加,当光合速率与呼吸速率相等时,环境中的CO2浓度即为CO2补偿点(CO2 compensation point,图中C点);当达到某一浓度(S)时,光合速率便达最大值(PM),开始达到光合最大速率时的CO2浓度被称为CO2饱和点(CO2 saturation point)。在CO2-光合曲线的比例阶段,CO2浓度是光合作用的限制因素,直线的斜率(CE)受Rubisco活性及活化Rubisco量的限制,因而CE被称为羧化效率(carboxylation efficiency)。从CE的变化可以推测Rubisco的量和活性,CE大,即在较低的CO2浓度时就有较高的光合速率,也就是说Rubisco的羧化效率高。在饱和阶段,CO2已不是光合作用的限制因素,而CO2受体的量,即RuBP的再生速率则成为影响光合的因素。由于RuBP再生受ATP供应的影响,所以饱和阶段光合速率反映了光合电子传递和光合磷酸化活性,因而Pm被称为光合能力。
  比较C3植物与C4植物CO2-光合曲线,可以看出:(1)C4植物的CO2补偿点低,在低CO2浓度下光合速率的增加比C3快,CO2的利用率高;(2) C2植物的CO2饱和点比C3植物低,在大气CO2浓度下就能达到饱和;而C3植物CO2饱和点不明显,光合速率在较高CO2浓度下还会随浓度上升而提高。C4植物CO2饱和点低的原因,可能与C4植物的气孔对CO2浓度敏感有关,即CO2浓度超过空气水平后,C4植物气孔开度就变小。另外,C4植物PEPC的Km低,对CO2亲和力高,有浓缩CO2机制,这些也是C4植物CO2饱和点低的原因。
  在正常生理情况下,植物CO2补偿点相对稳定,例如小麦100个品种的CO2补偿点为52±2μl·L-1,大麦125个品种为55±2μl·L-1,玉米125个品种为1.3±1.2μl·L-1 ,猪毛菜(CAM植物) CO2补偿点不超过10μl·L-1 。有人测定了数千株燕麦和5万株小麦的幼苗,尚未发现一株具有类似C4植物低CO2补偿点的幼苗。在温度上升、光强减弱、水分亏缺、氧浓度增加等条件下,CO2补偿点也随之上升。
  2.CO2供给 CO2是光合作用的碳源,陆生植物所需的CO2主要从大气中获得。 CO2从大气至叶肉细胞间隙为气相扩散,而从叶肉细胞间隙到叶绿体基质则为液相扩散,扩散的动力为. CO2浓度差。
  空气中的. CO2浓度较低,约为350μl·L-1 (0.035%),分压为3.5×10-5 MPa,而一般C3植物的. CO2饱和点为1 000~1 500μl·L-1 左右,是空气中的3~5倍。在不通风的温室、大棚和光合作用旺盛的作物冠层内的. CO2浓度可降至200μl·L-1左右。由于光合作用 对. CO2的消耗以及存在. CO2扩散阻力,因而叶绿体基质中的. CO2浓度很低,接近. CO2补偿点。因此,加强通风或设法增施. CO2能显著提高作物的光合速率,这对C3植物尤为明显。
  (三)温度
  光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。在强光、高. CO2浓度时温度对光合速率的影响要比弱光、低. CO2浓度时影响大,这是由于在强光和高. CO2条件下,温度能成为光合作用的主要限制因素。
  光合作用有一定的温度范围和三基点。光合作用的最低温度(冷限)和最高温度(热限)是指该温度下表观光合速率为零,而能使光合速率达到最高的温度被称为光合最适温度。光合作用的温度三基点因植物种类不同而有很大的差异(表4-6)。如耐低温的莴苣在5℃就能明显地测出光合速率,而喜温的黄瓜则要到20℃时才能测到;耐寒植物的光合作用冷限与细胞结冰温度相近;而起源于热带的植物,如玉米、高粱、橡胶树等在温度降至10~5℃时,光合作用已受到抑制。低温抑制光合的原因主要是低温时膜脂呈凝胶相,叶绿体超微结构受到破坏。此外,低温时酶促反应缓慢,气孔开闭失调,这些也是光合受抑的原因。
  C4植物的热限较高,可达50~60℃,而C3植物较低,一般在40~50℃。乳熟期小麦遇到持续高温,尽管外表上仍呈绿色,但光合功能已严重受损。产生光合作用热限的原因:一是由于膜脂与酶蛋白的热变性,使光合器官损伤,叶绿体中的酶钝化;二是由于高温刺激了光暗呼吸,使表观光合速率迅速下降。
  昼夜温差对光合净同化率有很大的影响。白天温度高,日光充足,有利于光合作用的进行;夜间温度较低,降低了呼吸消耗,因此,在一定温度范围内,昼夜温差大有利于光合积累。

  在农业实践中要注意控制环境温度,避免高温与低温对光合作用的不利影响。玻璃温室与塑料大棚具有保温与增温效应,能提高光合生产力,这已被普遍应用于冬春季的蔬菜栽培。
  (四)水分
  水分对光合作用的影响有直接的也有间接的原因。直接的原因是水为光合作用的原料,没有水不能进行光合作用。但是用于光合作用的水不到蒸腾失水的1%,因此缺水影响光合作用主要是间接的原因。
  水分亏缺会使光合速率下降。在水分轻度亏缺时,供水后尚能使光合能力恢复,倘若水分亏缺严重,供水后叶片水势虽可恢复至原来水平,但光合速率却难以恢复至原有程度。因而在水稻烤田,棉花、花生蹲苗时,要控制烤田或蹲苗程度,不能过头。
  水分亏缺降低光合的主要原因有:
  (1)气孔导度下降 叶片光合速率与气孔导度呈正相关,当水分亏缺时,叶片中脱落酸量增加,从而引起气孔关闭,导度下降,进入叶片的. CO2减少。开始引起气孔导度和光合速率下降的叶片水势值,因植物种类不同有较大差异:水稻为-0.2~-0.3MPa;玉米为-0.3~-0.4MPa;而大豆和向日葵则在-0.6~-1.2MPa间。
  (2)光合产物输出变慢 水分亏缺会使光合产物输出变慢,加之缺水时,叶片中淀粉水解加强,糖类积累,结果会引起光合速率下降。
  (3)光合机构受损 缺水时叶绿体的电子传递速率降低且与光合磷酸化解偶联,影响同化力的形成。严重缺水还会使叶绿体变形,片层结构破坏,这些不仅使光合速率下降,而且使光合能力不能恢复。
  (4)光合面积扩展受抑 在缺水条件下,生长受抑,叶面积扩展受到限制。有的叶面被盐结晶、被绒毛或蜡质覆盖,这样虽然减少了水分的消耗,减少光抑制,但同时也因对光的吸收减少而使得光合速率降低。
  水分过多也会影响光合作用。土壤水分太多,通气不良妨碍根系活动,从而间接影响光合;雨水淋在叶片上,一方面遮挡气孔,影响气体交换,另一方面使叶肉细胞处于低渗状态,
  这些都会使光合速率降低。
  (五)矿质营养
  矿质营养在光合作用中的功能极为广泛,归纳起来有以下几方面:
  1.叶绿体结构的组成成分 如N、P、S、Mg是叶绿体中构成叶绿素、蛋白质、核酸以及片层膜不可缺少的成分。
  2.电子传递体的重要成分 如PC中含Cu,Fe-S中心、Cytb、Cytf和Fd中都含Fe,放氧复合体不可缺少Mn2+ 和Cl- 。
  3.磷酸基团的重要作用 构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,合成淀粉的前体ADPG,以及合成蔗糖的前体UDPG,这些化合物中都含有磷酸基团。
  4.活化或调节因子 如Rubisco,FBPase等酶的活化需要Mg2+ ;Fe、Cu、Mn、Zn参与叶绿素的合成;K+ 和Ca2+ 调节气孔开闭;K和P促进光合产物的转化与运输等。
  肥料三要素中以N对光合影响最为显著。在一定范围内,叶的含N量、叶绿素含量、Rubisco含量分别与光合速率呈正相关。叶片中含N量的80%在叶绿体中,施N既能增加叶绿素含量,加速光反应,又能增加光合酶的含量与活性,加快暗反应。从N素营养好的叶片中提取出的Rubisco不仅量多,而且活性高。然而也有试验指出当Rubisco含量超过一定值后,酶量就不与光合速率成比例。
  重金属铊、镉、镍和铅等都对光合作用有害,它们大都影响气孔功能。另外,镉对PSⅡ活性有抑制作用。
  (六)光合速率的日变化
  一天中,外界的光强、温度、土壤和大气的水分状况、空气中的. CO2浓度以及植物体的水分与光合中间产物含量、气孔开度等都在不断地变化,这些变化会使光合速率发生日变化,其中光强日变化对光合速率日变化的影响最大。在温暖、水分供应充足的条件下,光合速率变化随光强日变化呈单峰曲线,即日出后光合速率逐渐提高,中午前达到高峰,以后逐渐降低,日落后光合速率趋于负值(呼吸速率)。如果白天云量变化不定,则光合速率会随光强的变化而变化。另外,光合速率也同气孔导度的变化相对应。在相同光强时,通常下午的光合速率要低于上午的光合速率,这是由于经上午光合后,叶片中的光合产物有积累而发生反馈抑制的缘故。当光照强烈、气温过高时,光合速率日变化呈双峰曲线,大峰在上午,小峰在下午,中午前后,光合速率下降,呈现“午睡”现象(midday depression of photo-synthesis),且这种现象随土壤含水量的降低而加剧(图4-35)。引起光合“午睡”的主要因素是大气干旱和土壤干旱。在干热的中午,叶片蒸腾失水加剧,如此时土壤水分也亏缺,那么植株的失水大于吸水,就会引起萎蔫与气孔导度降低,进而使 CO2吸收减少。另外,中午及午后的强光、高温、低. CO2浓度等条件都会使光呼吸激增,光抑制产生,这些也都会使光合速率在中午或午后降低。
  光合“午睡”是植物遇干旱时的普遍发生现象,也是植物对环境缺水的一种适应方式。但是“午睡”造成的损失可达光合生产的30%,甚至更多,所以在生产上应适时灌溉,或选用抗旱品种,增强光合能力,以缓和“午睡”程度。

光合效率与作物生产编辑本段回目录

  植物的干物质有90%~95%来自光合作用。因此在作物生产中,如何充分利用日光能进行光合作用就显得特别重要。  
一、光能利用率
  据气象学研究,到达地球外层的太阳辐射平均能量为1.353kJ·m-2·s-1 。但由于大气中水汽、灰尘、 CO2、O3等吸收,到达地面的辐射能,即使在夏日晴天中午也不会超过1kJ·m-2·s-1 ,并且只有其中的可见光部分的400~700nm能被植物用于光合作用。对光合作用有效的可见光称为光合有效辐射(photosynthetically active radiation,PAR)。如果把到达叶面的日光全辐射能定为100%,那么,经过如表4-7所示的若干难免的损失之后,最终转变为贮存在碳水化合物中的光能最多只有5%。通常把植物光合作用所积累的有机物中所含的化学能占光能投入量的百分比作为光能利用率(efficiency for solar energy utilization)。在所有的传输能量中仅有5%的能量转化为碳水化合物。
  试计算年产粮食为每公顷15t(年亩产为吨粮)的光能利用率。已知年太阳辐射能为5.0×1010kJ·hm-1 (按长江中下游地区年总辐射为5.0×106kJ·m-2计算),假定谷草比为1∶1(即经济系数为0.5),那么每公顷年产生物产量为30t(3×107g,忽略含水率),光能利用率为:
  Eu(%)=3×107g×17.2kJ·g-1/5.0×1010kJ×100≈1.03%
  如要测定某一时刻单叶的光能利用率,也可根据当时投射在叶片的辐射量及叶片光合速率来计算,已知每同化1μmol. CO2贮能0.47J。
  Eu(%)=光合速率(μmol. CO2·m-2·s-1)×0.47J·μmol-1/叶片接受的辐射能(J·m-2·s-1 )×100(4-44)
  如果按前述例子,光能利用率为1.03%估算,在长江中下游地区,当光能利用率达到了4%时,每公顷土地上年产粮食可达58t(亩产3.9t),这是十分诱人的产量。然而,目前高产田的年光能利用率在1%~2%之间,而一般低产田块的年光能利用率只有0.5%左右。实际的光能利用率为何比理论光能利用低呢?主要原因有二个:一是漏光损失,作物生长初期植株小,叶面积不足,日光的大部分直射于地面而损失。有人估算水稻与小麦等作物漏光损失的光能可在50%以上,如果前茬作物收割后不马上种后茬,土地空闲时间延长,则漏光损失就会更大。二是环境条件不适,作物在生长期间,经常会遇到不适于作物生长与进行光合的逆境,如干旱、水涝、低温、高温、阴雨、强光、缺. CO2、缺肥、盐渍、病虫草害等。在逆境条件下,作物的光合生产率要比顺境下低得多,这会使光能利用率大为降低。 
二、提高作物产量的途径
  作物的产量主要靠光合作用转化光能得来的。作物的光合产量(photosynthetic yield)可用下式表示:
  光合产量=净同化率×光合面积×光照时间
  如能提高净同化率,增加光合面积,延长光照时间,就能提高作物产量。
  (一)提高净同化率
  净同化率(net assimilation rate,NAR)是指一昼夜中在1m2叶面积上所积累的干物质量,它实际上是单位叶面积上白天的净光合生产量与夜间呼吸消耗量的差值。夜间作物的呼吸消耗在自然情况下难以改变,要提高净同化率就得提高白天的光合速率。前面我们已讲述过光合速率受作物本身的光合特性与外界光、温、水、气、肥等因素影响,那么,控制这些内外因素也就能提高净同化率。例如,种植C4植物以及叶色深、叶片厚而挺的品种,其净同化率要高于C3植物以及叶色淡、叶片薄而披的品种。人工光源成本大,在大田中不能采用,但如在地面上铺设反光薄膜则可增加作物行间或树冠内的光强。夏秋季强光对花木、蔬菜有光抑制,如采用遮阳网或防虫网遮光,就能避免强光伤害。早春,采用塑料小棚育苗或大棚栽培蔬菜,能有效提高温度,促进棚内作物的光合作用与生长。浇水、施肥(含叶面喷施)是作物栽培中最常用的措施,其主要目的是促进光合面积的迅速扩展,提高光合机构的活性。大田作物间的. CO2浓度虽然目前还难以人为控制(主要靠自然通风来提供),然而,通过增施有机肥,实行秸秆还田,促进微生物分解有机物释放. CO2以及深施碳酸氢铵(含有50%. CO2)等措施,也能提高冠层内的. CO2 浓度。在大棚和玻璃温室内,可通过. CO2发生器(燃烧石油),或石灰石加废酸的化学反应,或直接施放. CO2气体进行. CO2施肥,促进光合作用,抑制光呼吸……。以上的措施因能提高净同化率,因而均有可能提高作物产量。
  (二)增加光合面积
  光合面积,即植物的绿色面积,主要是叶面积,它是对产量影响最大,同时又是最容易控制的一个因子。通过合理密植或改变株型等措施,可增大光合面积。
  1.合理密植 所谓合理密植,就是使作物群体得到合理发展,使之有最适的光合面积,最高的光能利用率,并获得最高收获量的种植密度。种植过稀,虽然个体发育好,但群体叶面积不足,光能利用率低。种植过密,一方面下层叶子受到光照少,处在光补偿点以下,成为消费器官;另一方面,通风不良,造成冠层内. CO2浓度过低而影响光合速率;此外,密度过大,还易造成病害与倒伏,使产量大减。表示密植程度的指标有多种,例如有播种量、基本苗、总茎蘖数、叶面积系数等,其中较为科学的是叶面积系数。叶面积系数(leaf area index,LAI)是指作物的总叶面积和土地面积的比值。如LAI为3,就是说1m2土地上的叶面积为3m2。在一定范围内,作物LAI越大,光合积累量就越多,产量便越高。但LAI太大造成田间郁闭,群体呼吸消耗加大,反而使干物质积累量减少。能使干物质积累量或产量达最大的LAI称为最适LAI。多数资料表明,水稻在LAI为7,小麦为5,玉米为6左右时,通常能获得较高的产量。
  2.改变株型 近年来国内外培育出的水稻、小麦、玉米等高产新品种,差不多都是秆矮、叶挺而厚的。种植此类品种可增加密植程度,提高叶面积系数,并耐肥抗倒,因而能提高光能利用率。
  (三)延长光合时间
  1.提高复种指数 复种指数(multiple crop index)就是全年内农作物的收获面积对耕地面积之比。提高复种指数就相当于增加收获面积,延长单位土地面积上作物的光合时间。从播种、出苗至幼苗期,全田的叶面积系数很低,造成光能很大的浪费。通过轮种、间种和套种等提高复种指数的措施,就能在一年内巧妙地搭配作物,从时间和空间上更好地利用光能。如在前茬作物旺盛生长时,即在行间播种或栽植后茬作物,这样当前茬作物收获时,后茬作物已长大。如麦套棉、豆套薯、粮菜果蔬间混套种等有不少成功的经验。
  2.延长生育期 在不影响耕作制度的前提下,适当延长生育期能提高产量。如对棉花提前育苗移栽,栽后促早发,提早开花结铃,在中后期加强田间管理防止旺长与早衰,这样就能有效延长生育时间,特别是延长有效的结铃时间和叶的功能期,使棉花产量增加。
  3.补充人工光照 在小面积的栽培试验中,或要加速重要的材料与品种的繁殖时,可采用生物灯或日光灯作人工光源,以延长照光时间。
  以上阐述的是提高光合产量的途径。但作物生产是以获取经济产量为目标的,要提高经济产量,还要使光合产物尽可能多的向经济器官中运转,并转化为人类需要的经济价值较高的收获物质。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇植物的矿质与氮素营养 下一篇植物的呼吸作用

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
1

收藏到:  

词条信息

紫云英
紫云英
举人
最近编辑者 发短消息   

相关词条