生命经纬知识库 >>所属分类 >> PCR技术   

标签: PCR 技术 反向PCR

顶[0] 发表评论(25) 编辑词条

描述一种大聚合酶链反应(PCR)应用的方法,使在已知序列的核心区边侧的未知 DNA成几何级数扩增。用适当的限制性内切裂解含核心区的DNA,以产生适合于PCR扩 增大小的片段,然后片段的末端再连接形成环状分子。PCR的引物同源于环上核心区 的末端序列,但其方向性,使链的延长经过环上的未知区而不是分开引物的核心区。 这种反向PCR方法可用于扩增本来就在核心区旁边的序列,还可应用于制备未知序列 探针或测定边侧区域本身的上、下游序列。

引言

通常测定一个与已知序列相邻的DNA序列是必要的,例如位于编码DNA的上游和下游两 侧的区域,转位因子的插入位点以及克隆于Lambda、科期粒或酵母人工染色体载体上 的DNA片段末段的未知序列的探针等。这种末端特异探针在Southern Blot或染色体步 查(Chromosome walking)所需的噬菌斑杂交或克隆杂交中都十分有用。

要得到边侧序列的探针一般需要进行一系列费时、费力的工作,首先用内切酶裂解和 用已知边侧序列的探针Southern杂交以确定大小适合于克隆的末端片段;这些片段还 要经过凝胶分离、克隆,得到的物质再与已知边侧区域杂交以确定合适的克隆子。要 测定未吞边侧区序列时,通常需要从克隆中进行各种片段的亚克隆。

为避免这些步骤,我们采用扩展的PCR方法,使相邻边侧区域得以扩增。典型的PCR扩 增使用与互补链杂交的寡聚核苷酸引物。引物是定向的,使延伸向内跨过两个引物之 间的区域。一个引物的DNA合成产物作为另一个引物的模板,进行DNA变性、引物退 火,DNA聚合酶管伸反应的多次重复性循环,可使引物规定区域的拷贝数成指数增 加。但用传统PCR方法得不到紧邻引物外侧的DNA序列,因为寡聚核苷酸所引导的既有 目的DNA又有引物外侧区的DNA合成在拷贝过程中只呈线性增长,这种线性增长是因 为,对于每种引物来讲,其不能引导DNA反向合成(3'-5')。

几乎是同时,有三个实验室分别设计出一种方法,使PCR可以扩增边侧区域。该方法 (反向PCR)的基本点是用适当内切酶裂解核心区外分子,使这些酶切片段自身连接形 成环状分子,从而将边侧区域转化为内部区域。用与核心区末端同源的引物,但其 3'端趄向未知区域,可以进步用PCR扩增环中的未知区域,该方法如图1所示。

反向PCR程序

Ochman等,Triglia等和Silver、Keerikatte的文章中详细地描述了反向 PCR的不同应用,下面是Ochman等描述的方法概要。

用传统的缓冲液和其他提供者推荐的条件裂解DNA.反向PCR所扩增的片段的大小由 PCR扩增片段的大小决定,目前,PCR扩增的实际上限为3-4kb.在许多情况下,首先 需要进行Southern杂交来确定内切酶用以产生大小适于环化及反向PCR的片段的末端 片段。能裂解核心区的内切酶使反向PCR只能扩增引物所定模板(依赖于引物)的上游 或上游区,而不裂解核心区的酶则使两上边侧序列都扩增,并带有由内切酶和环化类 型决定的接点(例如,互补突头连接与钝头连接)。对于扩增左翼或右翼序列,初试时 最好靠近识别上个碱基位位的酶,并已知在核心区有其方便的裂解位点。如果用反向 PCR从含有大量不同的克隆片段的同一载体中探测杂交探针,建议事先在载体中引入 合适的酶切位点。

用T4连接酶在稀DNA浓度下环化更容易形成单环。在一些实验中,为产生对反向 PCR大小适当的DNA片段需要两种内切酶,但这样所产生的片段末端则不适于连接,环 化前需用Klenow或噬菌体T4DNA聚合酶修理(钝化)。连接前,需用酚或热变性使内切酶失活。在我们实验中,不必裂解环状分子核心区也可得到有效的PCR扩增。(这显然 不同于Silver和Keerikatter的实验结果,他们报道在核心裂解使模板线性化后, PCR扩增率增加100倍,但Triglia等则发现裂解环状分子与加热引起随机缺口效果相同)。

聚合酶链反应条件与经典所用的相同,例如,94℃-30秒变性,58℃-30秒引物退火, Taq聚合酶70℃延伸3分钟,进行30个循环。可改变PCR条件以生产特异产物。将反向 PCR用于测序时,与核心区末端后部结合的扩增引物更为有用,它使测序引物扩增部分的核心序列与未知边侧序列间的接点更近,减少了扩增引物的干扰。

反向PCR的应用

边侧区域的扩增

反向PCR的应用已经证明该方法可以避免不方便的克隆和亚克隆步骤,因此可解决大 量问题。我们最初用反向PCR扩增E.coli(Escherichiacoli)天然分离物中转位插入序 列ISL的边侧序列;Triglia[6]等将反向PCR用于编码疟原虫(Plasmodiumfalciparum) 主裂殖子表面抗原前体的基因,在实验中,他们用RsaⅠ酶裂解基因组DNA,连接,得 到的环再用HinfⅠ在内部位点酶切,然后进行扩增,得到预期的297bp大小的片段, 并用DNA直接测序进行鉴定。他们认为反向PCR由于具有从全长cDNA得到序列信息的优 点,将对步查现转录基因的5'端或3'端的边侧区域有用。

反向PCR的另一个应用是Silver和Keerikatte进行的。他们将其应用于扩增拉于整 合在小鼠细胞中的外生原病毒DNA边侧的细胞DNA.除强调反向PCR在染色体“步查” (Walking)或“跳查”中的用途,他们还指出,该技术用于扩增特征性弱的序列,这 些序列在E.Coli或其他宿主载体系统中很骓或不能克隆。

末端特异探针的制备

我们已改进反向PCR方法以得到在酵母人工染色体(YACS)中的插入载体接头处的 特异探针。YACs库建立于果蝇(Drosophilamelanogaster)OregonR种的高分子量DNA 上,有约平均大小170kb的插入。因为反向PCR可扩增果蝇插入子的特异末端,用YAC 载体任一臂上的一已知序列作核心区即可扩增,得到的DNA片段可用作探针检测所建 库中重叠和相邻的克隆序列[1]。

许多果蝇YAC染色体含有很大的插入区,可以与唾液腺多线染色体上几个相邻的主带 杂交。通过反各PCR人这些YAC克隆中产生末端牧场划1片段用于原位发交,也可以确 定插入DNA的方向。而且,许多YAC克隆含有中度或高度重复DNA序列,它们不能直接 用来探测文库以确定重叠克隆。图2为反向PCR产生的生物素标记的末端特异探针对果 蝇多线染色体的原位杂交。该探针含约1.3kb果蝇DNA,来自位于染色体2R染色体顶部 图中的一个120kb的YAC3'端。除了有助于确定具体YAC克隆的方向外,反向PCR产生的 末端特异DNA片段也克服了在含有重复DNA序列克隆的定位中的问题及制备毫克级特异 YAC探针用于染色体步查和杂交中的问题。

反向PCR的应用和局限

如Ochman等,Silver和Keerikatte所述,反向PCR在研究转座因子、反转录病及其他 能与基因组DNA整合或易位的DNA序列中有许多重要应用。这些应用包括序列的易位、 转座和基因融合,其中之一是已知序列,例如癌基因或免疫系统的基因组成。在所有 这些情况中,如已知序列插入未知序列或与未知序列并列,反向PCR可用于测定未知 边侧序列。反向PCR的主要优点是简单快速,可以研究许多独立克隆。其某些应用适 合于临床诊断。

目前反向PCR的局限之一是由未知边侧序列性质引起的,需用几种酶试验以选择产生 大小合适的片段的内切酶。另一局限是许多常用内切酶也在不适当位点裂解载体序 列。但一旦确定合适的内切酶,反向PCR方法是直接了当和可靠的。

大多数真核基因组含大量中度或高度重复序列,YAC或科斯粒中未知接点序列有时也 包括这些序列。通过反向PCR扩增得到的探针可与许多基因组序列杂交,但它们在用 于染色体的步查或跳查方面会受到限制,在这种情况下,需要进行亚克隆。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇应用PCR技术诊断单基因疾病 下一篇聚合酶链反应

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

admin
admin
超级管理员
词条创建者 发短消息   

相关词条