生命经纬知识库 >>所属分类 >> 生物化学   

标签: 生物分子 大分子 DNA 生物碱 基团 晶体 衍射

顶[1] 发表评论(35) 编辑词条

每个生物细胞均是由这些重要的生物分子及水所构成。这些分子包含去氧核糖核酸(DNA)、核糖核酸(RNA)、蛋白质、糖类及脂肪等。

DNA 是负责遗传的主要分子,由 A、C、T、G 四种不同的单元依任意的顺序排列,例如一个有 10 个单元的 DNA 分子,会有 4 的 10 次方种不同的排列顺序,各种生物的遗传虽然均由 DNA 分子负责,由于排列顺序的差异,以致造成相互间极大的不同;RNA 是负责传递遗传讯息的分子,它将 DNA 的遗传密码携带出来,并负责将 DNA 所下达的遗传指令,合成相关的蛋白质。

蛋白质分子在生物细胞中,负责所有生化反应及新陈代谢的催化工作,如果身体中一个蛋白质功能失调,或合成的数量失衡,将导致生理机制失常的连锁反应。由此可知这三种生物分子的重要性。

DNA 分子会进行自我复制,而 DNA 分子将遗传讯息传递给 RNA 分子的过程称为转录,RNA 分子根据 DNA 所提供的讯息制造出相关蛋白质的过程则称为转译。

目录

[显示全部]

生物分子的常见基团编辑本段回目录

(一)羟基-OH 

很多有机分子上含有羟基-OH,如醇、糖、核酸、蛋白质等,“羟”的字和音都由“氢氧”二字拼合而成。羟基与水有某些相似的性质,羟基是典型的极性基团,与水可形成氢键,因此,分子上羟基越多,亲水性就越大。羟基与电负性大的原子如-NH中的氮能形成氢键,氢键在维持蛋白质、核酸等大分子的空间结构中发挥着重要的作用。氢键是一种比离子键弱得多的静电吸引力,容易被一些外力如加热所破坏,蛋白质、核酸遇热变性就是因为热力导致分子中氢键断裂,空间结构破坏,蛋白质与核酸的性质与功能发生改变,原有生物学功能丧失。

醇与醇的脱水缩合产物称为醚,含有-C-O-C-结构;单糖分子通过半缩醛与另一分子的-OH脱水缩合后也存在-C-O-C-结构,不称醚,而特称为苷(音gan,旧称甙dai),淀粉、糖原等分子中的-C-O-C-称为糖苷键。

苯环上连接羟基的化合物称为酚。 

(二)羰基 >C=O(-CHO醛基、>CO 酮基、-COOH羧基) 

>C=O称为羰基(羰的字和音均由碳氧二字拼合而成)。细胞里含有羰基的化合物常见的有四种:羰基(酮基)在碳链中间的化合物称为酮;如果羰基在碳链末段的有两种形式,含-CHO的分子称为醛,含-COOH的称为羧酸(羧字是“羟基酸”的拼合);如果同时有2个羰基存在于苯环上称之为醌。醛、酮、羧酸、醌化合物在细胞里很常见,尤其是酮和羧酸,如丙酮、β-酮丁酸(乙酰乙酸)、α-酮戊二酸、泛醌(辅酶Q)、磷酸吡哆醛等。羧基可解离产生氢离子而形成负电离子-COO-,因此,羧基是酸性基团。 

(三)氨基-NH2和亚氨基-NH 

体内含氨基和亚氨基的化合物种类很多,所有的氨基酸都含有氨基或亚氨基,如丙氨酸(含氨基)、脯氨酸(含亚氨基)。如果羧基上的羟基与氨脱水缩合而成-CO-NH2,这样的化合物称为酰胺,在碳链中间的形式是-CO-NH-,称为酰胺键,蛋白质分子中氨基酸与氨基酸就是通过酰胺键连接的。肽链中间的酰胺键特称肽键。含有氨基和亚氨基的还有胍基和眯唑基。氨基中的氮原子电负性较强,可以结合氢离子而成-NH3+、=NH2+,因此,氨基和亚氨基是碱性基团。 

(四)巯基-SH和二硫键-S-S- 

巯的字和音均由氢硫二字拼合而成。带有巯基的化合物最常见的是半胱氨酸HOOC-CH(NH2)-CH2-SH、谷胱甘肽G-SH以及含半胱氨酸残基的各种蛋白质。两个半胱氨酸的两个巯基可以脱氢氧化为胱氨酸而在分子中形成-S-S-结构,-S-S-称为二硫键(二硫桥),二硫键是巯基的氧化形式,二硫键可加氢再还原为巯基。谷胱甘肽、巯基蛋白及巯基酶的活性基团是巯基,通过巯基参与反应。 

(五)磷酸基-H2PO4 

体内含磷酸基的化合物非常广泛,如葡萄糖-6-磷酸,磷酸烯醇式丙酮酸,核苷酸和核酸,磷酸蛋白质等等。2分子磷酸可以脱水缩合为焦磷酸酐(亦称焦磷酸酯),如ATP分子含有三个磷酸基,其中3个磷酸基之间含有2个磷酸酯(酐)键,此键断开时可释放大量能量,因此称为高能键。在细胞的很多代谢反应中,往往第一阶段的反应是使底物分子活化(使不活泼分子变得活泼以进行反应),活化的常见反应是由ATP提供一个高能磷酸基团给被活化的分子,如葡萄糖由ATP供能活化为葡萄糖-6-磷酸。 

(六)酯、酐、酰胺 

含氧酸与醇的脱水缩合产物称为酯。细胞内常见的酯有羧酸与醇(-OH)形成的酯,如甘油(丙三醇)和三分子脂肪酸脱水缩合形成的三脂酰甘油(甘油三酯,即脂肪);羧酸与-SH形成的硫酯(-SH与-OH性质类似),如辅酶A上的巯基与乙酸上的羧基脱水缩合为乙酰辅酶A,乙酰辅酶A就是一种硫酯,这个硫酯键断开时也能释放大量能量,因此称为高能硫酯键。含有高能硫酯键的化合物还有琥珀酸单酰辅酶A、脂肪酰辅酶A等。

含氧酸与含氧酸的脱水缩合产物称为酐,如羧酸-羧酸酐,羧酸-磷酸酐,磷酸-磷酸酐等。羧基、磷酸基由于含有羟基,因此羧酸-羧酸酐,羧酸-磷酸酐,磷酸-磷酸酐相当于是酸与醇的脱水缩合产物,因此这些酐也可称为酯。正如上述,ATP中的两个高能磷酸酯键亦称为高能磷酸酐键。

前已述及,羧酸与氨的脱水缩合产物称为酰胺R-CO-NH2,氨基酸的α-羧基与另一氨基酸的α-氨基脱水缩合形成的特殊酰胺键-CO-NH-称为肽键。

生物分子基团

水:生命活动的介质环境编辑本段回目录

水是生物体的第一大化合物,含量在50%以上,甚至可达99%。人体的含水量随年龄增长而减少,从新生儿80%到老年的55%。

地球表面的70%为水覆盖,水是地球表面最丰富的物质,水在地球表面以三种状态同时存在。液态水是良好的极性溶剂,很多物质都能溶于水中,众多的化学反应在水中能非常好的进行。生命现象主要是生物体内一系列生物化学反应的外部体现,因此,水是生命存在的介质环境,没有水就没有生命。

水分子的形状是一个等腰三角形,分子内O-H间的键长约为0.0965nm,H-O-H键角为104.5°。氢原子的电子由于氧原子核的强力吸引而偏向氧,结果使氢被氧化而呈正电,氧呈负电。由于氧原子只有两对电子是与质子(氢原子核)共享的,在8电子壳层中还有两对电子暴露在O-H的外部,这两对电子吸引相邻水分子上的正电,从而形成氢键。因此,水分子通过氢键而相互连接起来。水与其他分子的负电性原子形成键能大致相同的氢键,例如羧基中的-OH基团中的氧或蛋白质-NH基团中的氮都可与水分子的氢形成氢键。在分子中如果含有-OH、-NH等极性基团的分子与电负性强的原子也能形成氢键。在蛋白质分子中,存在着大量的氢键,从而使蛋白质的结构得到加固。氢键在加固核酸的特殊结构中也起着重要的作用。此外,水还能够和一些小分子有机化合物形成氢键。氢键的键能大约只有共价键的十分之一,幅度较小的温度变化就可以使氢键断开。这就使得带氢键的结构具有显著的柔顺性,使它们能随着内外环境的变化而变化。

生物体内物质的运输是依赖水良好的流动性完成的,另外水还有恒温、润滑等多种作用。 

无机盐:参与和调节新陈代谢编辑本段回目录

无机盐在细胞里含量很小,人体内的无机盐大约占5%左右,种类很多,含量最多的无机盐是钙和磷盐约占无机盐含量的一半左右,主要沉积在骨骼和牙齿中,无机盐的另一半大多以水合离子状态存在于体液中。由于无机盐的种类多样,因此功能不一。总体来说,无机盐有如下功能:

1.构成骨骼和牙齿的无机成分,对身体起支撑作用。骨骼中无机物约占1/3,有机物占2/3。存在于骨骼中的无机盐主要是钙和磷,有机物主要是蛋白质。有机物使骨骼具有韧性,无机盐使骨骼具有硬度。骨骼中的钙磷盐是体液中钙磷盐的贮存场所(钙磷库)。

2.维持生命活动的正常生理环境。Na+、Cl-、K+、HPO42-在维持细胞内外液的容量方面起着重要的作用。体内各种酶的作用需要相对恒定的pH,体液的缓冲系统由这些盐类构成,发挥稳定氢离子浓度的功能。同样,无机盐对肌肉、心肌的应激性的维持也有重要的作用。

3.参与或调节新陈代谢。体内很多酶需要离子结合才具有活性,有些离子可以增强或抑制酶的活性。某些离子参与物质转运、代谢反应、信息传递等多种功能。

无机盐是机体新陈代谢的重要调节和参与因素。 

蛋白质:生命活动的主要表现者编辑本段回目录

蛋白质是生物体的第二大化合物,在细胞的干重中,约一半以上是蛋白质,在活细胞中的含量在15%以上。蛋白质是大分子物质,分子量在6000至百万道尔顿。蛋白质的英文名叫做protein,源自希腊文προτο,它是“最原初的”,“第一重要的”意思。“朊”这个词就是根据protein的原意翻译的,但由于蛋白质一词沿用已久,所以“朊”并未被广泛采用。蛋白质在生物体内占有特殊的地位。蛋白质和核酸构成原生质中的主要成分,而原生质是生命现象的物质基础。

蛋白质是生命的结构基础和功能基础。蛋白质广泛地存在于细胞膜、液态基质、细胞器、核膜、染色体等结构中,蛋白质中的一半左右是酶-生物催化剂,细胞中众多的化学反应由酶分子催化。蛋白质种类众多,功能各异,总体来说,蛋白质具有下述功能:

1.催化和调控:体内物质代谢的一系列化学反应几乎都是由酶催化的。体内各组织细胞各种代谢的进行和协调,都与蛋白质的调控功能密切相关。

2.在协调运动中的作用:肌肉收缩是一种协调运动,肌肉的主要成分是蛋白质,肌肉收缩是肌肉中多种蛋白质组装成的粗丝、细丝完成的,从微观上看是细胞内微丝、微管的活动,精子、纤毛的运动等都与蛋白质的作用有关。

3.在运输及贮存中的作用:蛋白质在体内物质的运输和贮存中起重要作用。例如,全身各组织细胞时刻不能缺少的氧分子,就是由血红蛋白运输的;氧在肌肉中的贮存靠肌红蛋白来完成。铁在细胞内需与铁蛋白结合才能贮存。

4.在识别、防御和神经传导中的作用:体内各种传递信息的信使需与特异的受体相互识别,受体多为蛋白质,可见蛋白质在信息传递过程中起重要作用,另外,抗体对抗原的结合,神经冲动的传递等也是蛋白质参与完成的。

因此,蛋白质是生命过程中的主要分子,是生命现象的主要“演员”,蛋白质-生命的体现者。 

核酸:生命活动的主宰者编辑本段回目录

核酸在体内含量很少,分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。DNA主要存在于细胞核中,RNA主要存在于细胞质中。RNA主要有信使核糖核酸(mRNA)、转运核糖核酸(tRNA)和核糖核蛋白体核糖核酸(rRNA)三种。

核酸是重要的生物大分子,是生物化学与分子生物学研究的重要对象和领域。生物的特征是生物大分子决定的。生物大分子有四类:核酸、蛋白质、多糖和脂质复合物。糖和脂质的合成由酶(蛋白质)催化完成,它们与蛋白质在一起,增加了蛋白质结构与功能的多样性。蛋白质的合成取决于核酸;然而生物功能通过蛋白质来实现,包括核酸的合成也需要蛋白质的作用。因此,生物体内最重要的大分子物质是DNA、RNA和蛋白质。由生物大分子和有关生物分子与无机分子或离子共同构成生物机体不同层次的结构;生物大分子之间以及与其他分子之间的相互作用决定了一切生命活动。概括地说,核酸(主要是DNA)是生命的操纵者,蛋白质是生命的表现者,糖和脂肪是生命的能源物质,磷脂是生物膜的结构基础,水是生命存在的介质环境,无机盐参与和调节新陈代谢。

G. Mendel于1865年发现豌豆杂交后代性状分离和自由组合的遗传规律。F. Miescher于1868年发现核酸(当时称核素),细胞学家和遗传学家曾猜测核素可能与遗传有关。19世纪开始知道有两类核酸,直到20世纪40年代才了解DNA和RNA都是细胞的重要组成物质,前者可引起遗传性状的变化,后者可能参与蛋白质的生物合成。50年代初生物学家开始接受DNA是遗传物质的观点。1953年,Watson和Crick提出DNA的双螺旋结构模型,才从分子结构上阐明了其遗传功能。半个世纪以来,核酸研究已经成为生物化学与分子生物学研究的核心和前沿,其研究成果改变了生命科学的面貌,也促进了生物技术产业的迅猛发展,充分表明这类物质有重要的生物功能。

核酸的功能主要有以下三点:

1.DNA是主要的遗传物质:DNA分布在细胞核内,是染色体的主要成分,而染色体是基因的载体。细胞内的DNA含量十分稳定,而且与染色体数目平行。基因是染色体上占有一定位置的遗传单位。基因有三个基本属性:一是可通过复制,将遗传信息由亲代传给子代;二是通过转录表达产生表型效应;三是可突变形成各种等位基因。但有些病毒的基因组是RNA,基因是RNA的一个片段。一些可作用于DNA的物理化学因素均可引起DNA突变从而引起遗传性状的改变。DNA的突变是生物进化的基础,即突变的累积导致生物进化。

2.RNA参与蛋白质的生物合成:实验表明,由3类RNA共同控制着蛋白质的生物合成。核糖体是蛋白质合成的场所。过去以为蛋白质肽键的形成是由核糖体的蛋白质所催化,称转肽酶。1992年H. F. Noller等证明23S rRNA具有核酶活性,能够催化肽键形成。rRNA约占细胞总RNA的80%,它是装配者并起催化作用。tRNA占细胞总RNA的15%,它是转换器,携带氨基酸并起解译作用。mRNA占细胞总RNA的3~5%,它是信使,携带DNA的遗传信息并起蛋白质合成的模板作用。

3.RNA功能的多样性:20世纪80年代RNA的研究揭示了RNA功能的多样性,它不仅是遗传信息由DNA传递到蛋白质的中间传递体,虽然这是它的核心功能,。归纳起来,RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达和细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。病毒RNA是上述功能RNA的游离成分。

生物体通过DNA复制,而使遗传信息由亲代传给子代;通过RNA转录和翻译而使遗传信息在子代得到表达。RNA具备诸多功能,无不关系着生物机体的生长和发育,其核心作用是基因表达的信息加工和调节。 

糖:生命活动的主要能源物质编辑本段回目录

糖在动物体内是四大类生物分子中含量最小的,但糖类是草食动物及人体消化吸收最多的食物成分(不计水),原因在于吸收的糖类消耗很快(能源物质)、可大量转化为脂肪贮存及糖原贮存量较小造成的。

糖是多羟基醛或多羟基酮类化合物。糖的基本单位是单糖,如葡萄糖、果糖等。多数单糖有链式和环式两种结构,并且环式结构存在α和β两种异构体,三者之间可以相互转化。由单糖可以聚合成双糖、寡糖、多糖。双糖如蔗糖(葡萄糖-果糖二聚体)、麦芽糖(葡萄糖二聚体)和乳糖(半乳糖二聚体),多糖的典型代表是植物中的淀粉和动物体的糖原。

糖在植物体中贮存较多,在动物体相对含量较小。动物体不能由无机物合成糖,动物体内的糖最初都是由植物提供的,植物通过光合作用能将二氧化碳和水合成为糖。

糖在体内有以下两方面的功能:

1.细胞的重要能源物质:动物体摄取糖后,大量的糖是作为能源物质被使用。糖在体内氧化,释放能量,释放的能量以热散发维持体温和贮存于ATP、磷酸肌酸中以供生命活动所用。动物体摄取的糖如果有剩余,能够合成肝糖原和肌糖原以贮存糖,但量相对较小,一个中等身材的人只能贮存约500g左右的糖原。糖在身体内很容易转化为高度还原的能源贮存形式脂肪,贮存于脂肪组织,以供糖缺乏的时候给身体提供能量。

2.糖在细胞内与蛋白质构成复合物,形成糖蛋白和蛋白聚糖,广泛地存在与细胞间液、生物膜和细胞内液中,它们有些作为结构成分出现,有些作为功能成分出现。因此,糖蛋白和蛋白聚糖也是生命现象的“演员”。 

脂类:脂肪-生命的备用能源,磷脂:生物膜的结构基础编辑本段回目录

脂类是动物体内的第三大类物质。脂类大都是非极性物质,很难溶于水,脂类分为脂肪和类脂两大类。脂肪是由甘油和脂肪酸缩合而成,类脂有磷脂、胆固醇及胆固醇酯等形式。脂肪的含量不稳定,是体内贮存的能源物质,变化很大,称为可变脂或贮脂,一般成年男性脂肪占体重的10~20%。磷脂由于是细胞的结构成分,因此含量是稳定的,称固定脂或膜脂,约占体重的5%。

1.   三脂酰甘油(脂肪)的丙三醇头部是亲水的,而3条脂肪酸尾部是疏水的。

2.   X基团是极性的,常见的有胆碱、乙醇胺、丝氨酸等。

3.   磷脂和糖脂只有2条或1条疏水性尾部,其余都是亲水的,因此磷脂和糖脂很容易形成油与水的分界膜。

脂类的主要作用有以下三点:

1.脂肪是贮存的能源物质:脂肪是高度还原的能源物质,含氧很少,因此相同质量的脂肪和糖相比氧化释放的能量很多,可达糖的两倍以上,并且由于脂肪疏水,因此可以大量贮存,但脂肪作为能源物质的缺点也是明显的,因为疏水,所以脂肪的动员速度比亲水的糖要慢。脂肪主要的贮存部位是皮下、大网膜、肠系膜和脏器周围,贮存量可达15~20kg,足以维持一个人一个月的能量需要。

2.磷脂是生物膜的结构基础:磷脂是脂肪的一条脂肪酸链被含磷酸基的短链取代的产物,因为这条磷酸基链的存在,使磷脂的亲水性比脂肪的大,能够自发形成磷脂双分子层膜。生物膜的骨架就是磷脂双分子层,再加上一系列的蛋白质和多糖就构成生物膜。生物膜在细胞中是广泛存在的,因此,一个细胞的膜表面积很大。膜分隔细胞的空间使不同类的化学反应可以在不同的区间完成而不互相干扰,很多化学反应在膜的表面上进行。神经元细胞由于树突轴突的存在,细胞膜面积十分巨大,因此神经组织是体内含磷脂最丰富的组织。

3.胆固醇的衍生物是重要的生物活性物质:胆固醇可在肝脏转化为胆汁酸排入小肠,胆汁酸可以乳化脂类食物而加速脂类食物的消化;7-脱氢胆固醇可在皮肤中(日光照射下)转化为维生素D3,然后在肝脏和肾脏的作用下形成1,25-(OH)2-D3,通过促进肠道和肾脏对钙磷的吸收使骨骼牙齿得以生长发育;胆固醇可在肾上腺皮质转化为肾上腺皮质激素和性激素;胆固醇可在性腺转化为性激素。另外,不饱和脂肪酸也是体内其他一些激素或活性物质的代谢前体,胆固醇也作为生物膜的结构成分出现。

脂类物质是贮存的能源物质、生物膜的结构成分和体内一些生理活性物质的代谢前体。

生物分子的功能分类编辑本段回目录

生物体体内的物质是多种多样的,但可以从大的功能上划分为三大类,即结构物质、能源物质和活性物质(功能物质)。 

一、结构物质 

结构物质是生物体各种结构的基础,它们构成生物膜、细胞质骨架、各种细胞器、细胞核等结构,这些结构是细胞执行各种生命活动的场所。 

(一)生物膜系统 

生物膜系统包括细胞质膜(外周膜)、细胞质内各种细胞器包膜(如线粒体膜、叶绿体膜、内质网膜、溶酶体膜、高尔基体膜、过氧化物酶体膜)及核膜等。与真核细胞相比,原核细胞的内膜系统不很丰富,只有少量的膜结构,例如某些细菌的间,蓝绿藻中进行光合作用的类囊体膜的。

生物膜结构是细胞结构的基本形式,它对细胞内很多生物大分子的有序反应和区域化提供了必须的结构基础,从而使各个细胞器和亚细胞结构既各自有恒定、动态的内环境,又相互联系,相互制约,从而使整个细胞活动有条不紊、协调一致地进行。

生物膜系统主要由类脂、蛋白质和糖类3类分子构成,还有水、金属离子等。

1.类脂有磷脂、胆固醇,膜的主体成分是磷脂。糖类与脂类复合构成糖脂,通常存在于膜的外表面,神经组织是含类脂比例最大的组织,尤以神经元为甚,因为神经元是多突起的细胞,膜/质比例很大。

膜的骨架是磷脂双分子层。磷脂分子是一端亲水一端疏水的分子,它们通过疏水端粘合、亲水端指向外侧构成双分子层。膜的外侧是亲水的,膜中间是疏水的。膜内的磷脂分子位置是流动的,并不具有固定的位置,因此生物膜的物理状态是介于液态和固态之间的一种状态,既有类似于固体的相对稳定形状,又具有液态分子的流动性。正因为此,膜上的所有分子都具有流动性。

2.膜蛋白。根据粗略计算,细胞中大约20%~25%的蛋白质是与膜结构相连的蛋白质,膜蛋白可根据它们在膜上的定位分为膜周边蛋白质(表面蛋白)和膜内在蛋白质(镶嵌蛋白质),这些蛋白质有些是酶,有些是支撑细胞外形的支撑蛋白,有些是受体,有些是离子通道。

3.在生物膜中,糖类的含量较少,其中多数分布在质膜上,约占质膜的2%~10%,内膜的含量相对较少。糖类在膜上通常与蛋白质和脂质复合,在质膜的外侧形成一层多糖,即所谓的“糖被”,这在细胞膜尤其明显。糖被与细胞识别、信息分子传递等相关,例如ABO血型物质、一些激素和活性物质(干扰素、霍乱菌素、促甲状腺素、破伤风素、某些药物等)的受体。 

(二)细胞壁 

植物细胞和细菌都存在细胞壁,动物细胞缺乏细胞壁。细胞壁的主要成分是多糖。 

(三)细胞溶胶(细胞质基质、细胞浆)及核基质 

细胞溶胶的成分复杂,含结构物质、功能物质和能源物质,其中起主要支撑定型作用的物质是蛋白质。 

(四)细胞间质 

细胞间质的主要成分是蛋白质和多糖,在结缔组织尤为明显。

机体的结构物质还有皮肤的角质层、肌腱、肌肉纤维、毛发、角、甲等,这些结构的主体成分都是蛋白质。 

二、能源物质 

前已述及,体内的能源物质有糖、脂肪和蛋白质,其中糖类和脂肪是主要的能源物质,蛋白质亦可作为能源物质使用,但蛋白质的主要功能是活性物质(功能物质)和结构物质。 

三、功能物质或活性物质 

此类物质从化学组成上种类繁多,有蛋白质、脂类、糖类、核酸、维生素及其他化学物质,但可分为以下几种类型。 

(一)功能蛋白 

诸如红细胞中的血红蛋白、肌肉细胞中的肌球蛋白和肌动蛋白、细胞间质的胶原蛋白和弹性蛋白、贮铁蛋白、血浆中的转运蛋白、膜上的转运蛋白等,这些蛋白质有些既是功能蛋白又是结构蛋白。 

(二)酶-生物催化剂  

其化学本质是蛋白质,即具有催化能力的蛋白质。广泛分布于各种细胞中,现已鉴定出4000多种酶,而且每年都有新酶被发现。生物机体是一个复杂的化学系统,细胞内绝大多数的化学反应都依赖酶的催化。 

(三)细胞间信息物质 

这类物质携带信息从而使机体细胞进行联络和沟通,调节机体生命活动。有激素、神经递质、细胞因子等。从化学组成上分为3类,蛋白质及肽类、氨基酸类(氨基酸衍生物)、胆固醇类(甾醇类),某些细胞间信息物质还含有糖。

从产生细胞到靶细胞的传输距离上划分,细胞间信息物质分为远距离信息物质(激素)、旁细胞分泌的信息物质(细胞因子)和作用于自身细胞的自分泌信息物质(细胞因子)。 

(四)细胞内信息物质 

担当细胞内信息传递的任务,这些物质有核苷酸类(如cAMP、cGMP)、糖类(如磷酸肌醇)、无机离子(如Ca2+)等。 

(五)DNA和RNA 

DNA和RNA是遗传信息的载体,通过复制与细胞分裂将遗传信息传递至子细胞和子代,通过表达途径产生蛋白质和酶,全面调控细胞的新陈代谢。

需要注意的是,很多物质的功能不是单一的,而具有多种功能。例如细胞膜上的受体蛋白,它既是细胞膜的结构蛋白,又是功能蛋白,在细胞破解死亡后可作为其他细胞的能源物质;肌肉中的肌球蛋白和肌动蛋白既是结构蛋白,又是功能蛋白,在长期饥饿时,肌肉中的一部分蛋白质被动员,而被当作能源物质利用;同样,酶是生物催化剂,蛋白质及氨基酸类激素是信息物质,它们降解后,也作为能源物质被利用。

生物元素编辑本段回目录

  无机化合物简称无机物,指除碳氢化合物及其衍生物以外的一切元素及其化合物,如水、食盐、硫酸等。绝大多数的无机物可以归入氧化物、酸、碱和盐4大类。生物体中的无机物主要有水及一些无机离子,如Na+、K+、Ca2+、Mg2+、Cl-、HCO-3、SO42-、HPO42-等。
  有机物是有机化合物的简称,所有的有机物都含有碳元素。但是并非所有含碳的化合物都是有机化合物,比如CO,CO2。除了碳元素外有机物还可能含有其他几种元素。如H、N、S等。虽然组成有机物的元素就那么几种(碳最重要),但到现在人类却已经发现了超过1000万中有机物。而它们的特性更是千变万化。因此,有机化学是化学中一个相当重要的研究范畴。
  有机物即碳氢化合物(烃)及其衍生物,简称有机物。除水和一些无机盐外,生物体的组成成分几乎全是有机物,如淀粉、蔗糖、油脂、蛋白质、核酸以及各种色素。过去误以为只有动植物(有机体)能产生有机物,故取名“有机”。现在不仅许多天然产物可以用人工方法合成,而且可以从动植物、煤、石油、天然气等分离或改造加工制成多种工农业生产和人民生活的必需品,象塑料、合成纤维、农药、人造橡胶等。与无机物相比,有机物的种类众多,一般挥发性较大、熔点和沸点较低,反应较慢(较复杂)。溶于有机溶剂,且能燃烧。碳原子可用共价键彼此连接生成多种结构,组成数量巨大的不同种类的有机分子骨架。按照基本结构,有机物可分成3类:(1)开链化合物,又称脂肪族化合物,因为它最初是在油脂中发现的。其结构特点是碳与碳间连接成不闭口的链。(2)碳环化合物(含有完全由碳原子组成的环),又可分成脂环族化合物(在结构上可看成是开链化合物关环而成的)和芳香族化合物(含有苯环)两个亚类。(3)杂环化合物(含有由碳原子和其他元素组成的环)。在烃分子中,共价连接的碳原子是骨架,碳的其他键则与氢结合。烃骨架非常稳定,因为形成碳-碳单键和双键的碳原子同等享用它们之间的电子对。烃的氢原子可以被不同的功能团(官能团)取代产生不同类的有机物。功能团决定分子的主要性质,所以有机物也常根据其功能团分类。有机生物分子的功能团比其烃骨架在化学上活泼得多,它们能改变邻近原子的几何形状及其上的电子分布,从而改变整个有机分子的化学反应性。从有机分子中的功能团可以分析和推测其化学行为和反应。如酶(细胞的催化剂)可识别生物分子中的特殊功能团并催化其结构发生特征性变化,大多数生物分子是多功能的,含有两种或多种功能团。在这些分子中,每种类型的功能团有其自己的化学特征和反应。如氨基酸具有至少两种功能团——氨基和羧基。丙氨酸的化学性质就基本决定于其氨基和羧基。又如葡萄糖也是多功能的生物分子,其化学性质基本决定于羟基和醛基两种功能团。生物分子的功能团在其生物活性中起着重要的作用。
  例如甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂(如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。
  甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及甲醛等物质的原料。
  413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。

生物单分子编辑本段回目录

  生物单分子是指一些与生命有着密切关系的有机低相对分子量化合物,包括氨基酸、脂肪酸、糖、嘌呤、嘧啶、单核苷酸、卟啉、ATP等高能化合物。它们是构成生物高分子的基本成分。

生物大分子编辑本段回目录

  像氨基酸、脂肪酸等都叫做生物单分子,是与生命有着密切关系的物质,它们是构成大分子的基本物质。生物大分子是构成生命的基础物质,包括蛋白质、核酸、碳氢化合物等。生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸、脂质、糖类。
  这个定义只是概念性的,与生物大分子对立的是小分子物质(二氧化碳、甲烷等)和无机物质,实际上生物大分子的特点在于其表现出的各种生物活性和在生物新陈代谢中的作用。
  比如:某些多肽和某些脂类物质的分子量并未达到惊人的地步,但其在生命过程中同样表现出了重要的生理活性。与一般的生物大分子并无二致。
  生物大分子大多数是由简单的组成结构聚合而成的,蛋白质的组成单位是氨基酸,核酸的组成单位是核苷酸……
  生物大分子都可以在生物体内由简单的结构合成,也都可以在生物体内经过分解作用被分解为简单结构,一般在合成的过程中消耗能量,分解的过程中释放能量。
  高相对分子量的生物有机化合物(生物大分子)主要是指蛋白质、核酸以及高相对分子量的碳氢化合物。与低相对分子量的生物有机化合物相比,高相对分子量的有机化合物具有更高级的物质群 。它们是由低相对分子量的有机化合物经过聚合而成的多分子体系。从化学结构而言,蛋白质是由α-L-氨基酸脱水缩合而成的,核酸是由嘌呤和嘧啶碱基,与糖D-核糖或2-脱氧-D-核糖)、磷酸脱水缩合而成,多糖是由单糖脱水缩合而成。由此可知,由低相对分子量的生物有机化合物变为高相对分子量的生物有机化合物的化学反应都是脱水缩合反应。
  在原始地球条件下,有两条路径可以达到脱水缩合以形成高分子:其一是通过加热,将低相对分子量的构成物质加热使之脱水而聚合;其二是利用存在于原始地球上的脱水剂来缩合。前者常常是在近于无水的火山环境中进行,后者则可以在水的环境中进行。
  生物大分子是生物体的重要组成成份,不但有生物功能,而且分子量较大,其结构也比较复杂。在生物大分子中除主要的蛋白质与核酸外,另外还有糖、脂类和它们相互结合的产物。如糖蛋白、脂蛋白、核蛋白等。它们的分子量往往比一般的无机盐类大百倍或千倍以上。蛋白质的分子量在一万至数万左右,核酸的分子量有的竟达上百万。这些生物大分子的复杂结构决定了它们的特殊性质,它们在体内的运动和变化体现着重要的生命功能。如进行新陈代谢供给维持生命需要的能量与物质、传递遗传信息、控制胚胎分化、促进生长发育、产生免疫功能等等。
  生物大分子是生物体的重要组成成份,不但有生物功能,而且分子量较大,其结构也比较复杂。在生物大分子中除主要的蛋白质与核酸外,另外还有糖、脂类和它们相互结合的产物。如糖蛋白、脂蛋白、核蛋白等。它们的分子量往往比一般的无机盐类大百倍或千倍以上。蛋白质的分子量在一万至数万左右,核酸的分子量有的竟达上百万。这些生物大分子的复杂结构决定了它们的特殊性质,它们在体内的运动和变化体现着重要的生命功能。如进行新陈代谢供给维持生命需要的能量与物质、传递遗传信息、控制胚胎分化、促进生长发育、产生免疫功能等等。
  人类对生物大分子的研究经历了近两个世纪的漫长历史。由于生物大分子的结构复杂,又易受温度、酸、碱的影响而变性,给研究工作带来很大的困难。在20世纪末之前,主要研究工作是生物大分子物质的提取、性质、化学组成和初步的结构分析等。
  19世纪30年代以来,当细胞学说建立的时候,有人已经研究蛋白质了。蛋白质命名始于1836年,当时著名的瑞典化学家柏尔采留斯(J.Berzelius)和正在研究鸡蛋蛋白类化合物的荷兰化学家穆尔德(G.J.Mulder)就提出用“蛋白质”命名这类化合物。并且把它列为生命系统中最重要的物质。到本世纪初,组成蛋白质的20种氨基酸已被发现了12种,1940年陆续发现了其余的氨基酸。19世纪末,有机化学家们就开始探讨蛋白质的结构。德国有机化学家费舍尔(E.Fischer)与别人合作提出了氨基酸之间的肽键相连接而形成蛋白质的论点,1907年费舍尔又合成了一个由15个甘氨酸和3个亮氨酸组成的18个肽的长链。同时英国晶体分析学派中的贝尔纳(J.D.Bernal)和阿斯特伯理(W.T.Astbury)等曾用X射线衍射分析方法分析羊毛、头发等蛋白的结构,证明它们是折叠卷曲纤维状物质。随着研究的逐步深入,科学家们搞清了蛋白质是肌肉、血液、毛发等的主要成份,有多方面的功能。
  核酸的发现要比蛋白质晚得多。1868年在德国工作的24岁的瑞士化学家米歇尔(F.Miescher)从病人伤口脓细胞中提取出当时称为“核质”的物质。这就是被后来公认的核酸的最早发现。后来科赛尔(A.Kssel)及他的两个学生琼斯(W.Jones)和列文(P.A.Levene)弄清了核酸的基本化学结构,证实核酸是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成。其中碱基有4种(腺瞟呤、鸟瞟呤、胞嘧啶和胸腺嘧啶),核糖有2种(即核糖与脱氧核糖)。据此核酸分成两类:核糖核酸(RNA)和脱氧核糖核酸(DNA)。他们根据当时比较粗糙的分析认为,4种碱基在核酸中的量相等,从而错误地推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成四核苷酸,以此为基础聚合成核酸,这就是较著名的“四核苷酸假说”。这个假说从20年代后起统治了核酸结构的研究大约20多年的时间,对认识复杂的核酸结构和功能起了相当大的阻碍作用。核酸当时虽然是在细胞核中发现的,但由于它的结构过于简单,也就很难想象它能在异常复杂多变的遗传现象中起什么作用。甚至有些科学家在当时蛋白质的结构被阐明之后,认为很可能是蛋白质在遗传中起主要作用。
  酶的阐明是1897年德国化学家布希纳(E.Buchner)从磨碎的酵母细胞中提取出了能使酒精发酵的酿酶开始的。布希纳研究表明,从活体内提取出来的酶能同在活体内一样起作用。不但打击了当时流行的活力论,而且使生物化学的研究进入了解细胞内的化学变化的阶段。后来英国的生物化学家哈登(A.Harden)等对酒精发酵的具体化学步骤作了许多研究。到20年代大量实验结果表明,酵母使糖发酵产生酒精同肌肉收缩时使糖变为乳酸这两个过程基本上是一致的,又称糖酵解作用。到30年代经许多科学家的研究,最后由德国的生物化学家克雷布斯(H.A.Krebs)综合,提出了生物呼吸作用最后产生CO2和H2O及能量(ATP)的三羧酸循环。在此期间还有许多科学家研究了脂肪和氨基酸等的代谢以及糖、脂肪及蛋白质在代谢中相互转化和它们的生物合成等。这些过程均是在酶的催化下完成的。

生物大分子衍射技术编辑本段回目录

  生物大分子相对分子质量至少在5000以上,甚至超过百万的生物学物质,如蛋白质、核酸、多糖等。它与生命活动关系极为密切,由被认为单体的简单分子单位所组成。在溶液中有形成凝胶的物质。一般把相对分子质量超过一万的化合物称为大分子化合物或高分子化合物。它是由许多重复的结构单元组成,一般具有线状结构,有的具有枝状结构。许多具有重要生物作用的物质,如蛋白质和核酸等均属于这类化合物。?
  大分子蛋白质的基本组成单位或构件分子(building-block molecule)是氨基酸(amino acid,AA)
  从衍射花样(衍射线的方向和强度)推算生物大分子的三维结构(也常称空间结构、立体结构或构象)的技术。其主要原理是 X射线、中子束或电子束通过生物大分子有序排列的晶体或纤维所产生的衍射花样与样品中原子的排布规律有可相互转换的关系(互为傅立叶变换)。
  X 射线衍射技术能够精确测定原子在晶体中的空间位置,是迄今研究生物大分子结构的主要技术。中子衍射和电子衍射技术则用来弥补X射线衍射技术之不足生物大分子单晶体的X射线衍射技术是50年代以后,首先从蛋白质的晶体结构研究中发展起来的,并于70年代形成一门晶体学的分支学科──蛋白质晶体学。生物大分子单晶体的中子衍射技术用于测定生物大分子中氢原子的位置,也属蛋白质晶体学。纤维状生物大分子的X射线衍射技术用来测定这类大分子的一些周期性结构,如螺旋结构等。以电子衍射为原理的电子显微镜技术能够测定生物大分子的大小、形状及亚基排列的二维图象。它与光学衍射和滤波技术结合而成的三维重构技术能够直接显示生物大分子低分辨率的三维结构。
  历史回顾 1912年德国物理学家 M.von劳厄预言晶体是 X射线的天然衍射光栅。此后英国物理学家W.H.布格和W.L.布格开创了X射线晶体学。几十年来,这门学科不断发展和完善,测定了成千上万个无机和有机化合物的晶体和分子结构。由它提供的结构资料已经成为近代结构化学的基础。但是传统的小分子晶体结构的分析方法不适用于原子数目多,结构复杂的生物大分子。直到1954年英国晶体学家等人提出在蛋白质晶体中引入重原子的同晶置换法之后,才有可能测定生物大分子的晶体结构。1960年英国晶体学家J.C.肯德鲁等人首次解出一个由153个氨基酸组成、分子量为17500的蛋白质分子──肌红蛋白的三维结构。图1 [巨头鲸肌红蛋白分子的结构模型]表示它的 2埃分辨率的结构模型。此后生物大分子晶体结构的研究工作迅速发展。至80年代初,已有近 200个、等生物大分子的三维结构被测定,从而有力地推动了分子生物学的发展。中国继60年代首次人工合成牛胰岛素之后,于70年代初测定了三方二锌猪胰岛素的三维结构。1986年中国已经完成这个结构1.2埃高分辨率的修正工作。
  晶体和X射线衍射 电磁波是直线传播的,但在某些情况下也会拐弯,这就是衍射现象。当可见光通过针孔或狭缝时,就会出现这种现象。由于针孔或狭缝的大小和可见光的波长量级相同,可以把针孔或狭缝看做是一个点光源,它向四面八方辐射出二次电磁波,或称散射波。如果有多个有序排列的针孔或狭缝,由于这些散射波的干涉,就会形成规则的明暗相间的衍射花样。这是因为来自不同部位的散射波的相位及振幅不同,它们相加的结果在有些地方加强,而在另一些地方减弱。这些花样随波长或针孔的大小及其排布方式不同而变化(图2[三种针孔的排列方式及其对应的衍射花样])。当X射线通过晶体时,晶体内原子的核外电子能够散射X射线。如果把每个原子看成是个散射源,由于X射线的波长同原子间的距离量级相同,因此也会发生衍射现象。晶体结构的特征是晶体内的原子或分子周期重复地排列。如果采用一组抽象的几何点来表示这种周期重复的规律,那么这种排列可以表示为点阵。晶体的三维点阵结构使得晶体可被划分成为无数个大小和形状完全相同的平行六面体,即被称为晶胞。它是晶体结构的基本重复单位。每个晶胞内包含种类、数目和排列完全相同的原子。可以推得,衍射线(也称反射线)的强度取决于晶胞的内容,它的方向取决于波长和晶胞的大小和形状。
  晶体结构测定 晶体对X射线、中子束及电子束的衍射,与规则排列的针孔对可见光的衍射遵循相同的光学变换原理,即针孔或晶体的结构(针孔或晶体中原子的排列)经傅里叶变换,可以得到它们的倒易图像──衍射波谱。反之,衍射波谱的反变换,即为正空间的图像──针孔的排列或晶体的结构。在可见光的衍射中,这种反变换可由透镜的聚焦过程实现。但是迄今为止,人们还未找到能使 X射线(或中子)散射线聚焦的办法。因此也就无法直接观察生物大分子的像。这只能借助电子计算机从数学上完成这种反变换的计算。

生物高分子编辑本段回目录

  生物高分子一般是指自然界生物体内的高分子。生物高分子及其衍生物是一类重要的生命物质,协助生命体实现着许多重要的生理功能。
  生物高分子种类丰富,特性多样,根据其不同的化学结构可以分为八大类:①核酸,如脱氧核糖核酸、核糖核酸;②聚酰胺,如蛋白质、聚氨基酸;③多糖,如纤维素、淀粉、壳聚糖和黄原胶;④有机聚氧酯,如聚羟基脂肪酸酯;⑤聚硫酯;⑥无机聚酯,以聚磷酸酯为惟一代表;⑦聚异戊二烯,如天然橡胶或古塔波胶;⑧聚酚,如木质素、腐殖酸。
  与传统化学工业中的合成高分子相比,生物高分子具有许多诱人的特性和奇妙的功能。生物高分子可以特异性地与许多物质、材料发生相互作用,表现出极强的亲和性;生物高分子具有很高的强度;生物高分子通常是生物可降解的;生物高分子来源于生物体,在工业上应用可以实现可持续性。正因为如此,生物高分子的开发与应用已成为各国生物技术领域和高分子材料领域研究的热点。

生物靶分子Biotarget molecule编辑本段回目录

  外源性物质进入生物体后进攻并与之结合的生物大分子(如蛋白质,脱氧核糖核酸)。生物体是一复杂体系,进入体内的外源性物质可以遇到各种不同的生物分子,与何者结合除与物质的结构有关还与热力学和动力学等因素有关。

DNA分子编辑本段回目录

  DNA即脱氧核糖核酸(英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA.
  DNA分子就是带有以上特征结构的分子。DNA结构的发现是科学史
  DNA结构的发现是科学史上最具传奇性的“章节”之一。发现DNA结构是划时代的成就,但发现它的方法是模型建构法,模型建构法就像小孩子拼图游戏一样的“拼凑”法。而在这场“拼凑”中表现最出色的是沃森和克里克。
  1928年4月6日,沃森出生于美国芝加哥。16岁就在芝加哥大学毕业,获得动物学学士学位,在生物学方面开始显露才华。22岁时取得博士学位,随后沃森来到英国剑桥大学的卡文迪什实验室,结识了早先已在这里工作的克里克,从此开始了两人传奇般的合作生涯。克里克于1916年6月8日生于英格兰的北安普敦,21岁在伦敦大学毕业。二战结束后,来到剑桥的卡文迪什实验室,克里克和沃森一样,对DNA有着浓厚的兴趣,从物理学转向研究生物学。
  当时人们已经知道,DNA是一种细长的高分子化合物,由一系列脱氧核苷酸链构成,脱氧核苷酸又是由脱氧核糖、磷酸和含氮碱基组成,碱基有4种。在1951年,很多科学家对DNA的结构研究展开了一场竞赛。当时有两个著名的DNA分子研究小组,一个是以著名的物理学家威尔金斯和化学家富兰克林为首的英国皇家学院研究小组,他们主要用X射线衍射来研究DNA结构。一个是以著名化学家鲍林为首的美国加州理工大学研究小组,他们主要用模型建构法研究DNA结构,并且已经用该方法发现蛋白质a螺旋。
  1951年2月,威尔金斯将富兰克林拍的一张非常精美的DNA的X光衍射照片在意大利举行的生物大分子结构会议上展示,一直对DNA有浓厚兴趣的沃森看到这张图时,激动得话也说不出来,他的心怦怦直跳,根据此图他断定DNA的结构是一个螺旋体。他打定主意要制作一个DNA模型。他把这种想法告诉了他的合作者克里克,得到了克里克的认可。
  沃森和克里克构建DNA分子结构模型的工作始于1951年秋。他们用模型构建法,仿照著名化学家鲍林构建蛋白质α螺旋模型的方法,根据结晶学的数据,用纸和铁丝搭配脱氧核苷酸。
  他们构建了一个又一个模型,都被否定了。但沃森坚持认为,DNA分子可能是一种双链结构。因为自然界中的事物,很多是成双成对的,细胞中的染色体也是成对的。之后他们分别完成了以脱氧核糖和磷酸交替排列为基本骨架,碱基排在外面的双螺旋结构(如图一),和以脱氧核糖和磷酸交替排
  列为基本骨架,碱基排在内部,且同型碱基配对的双螺旋结构(如图二)。
  1952年,生物化学家查伽夫访问剑桥大学时向报道了他对人、猪、牛、羊、细菌和酵母等不同生物DNA进行分析的结果。查伽夫的结果表明,虽然在不同生物的DNA之间,4种脱氧核苷酸的数量和相对比例很不相同,但无论哪种物质的DNA中,都有A=T和G=C,这被称为DNA化学组成的“查伽夫法则”。1952年7月,查伽夫访问卡文迪什实验室时,向克里克详细解释了A:T=G:C=1:1的法则。之后,克里克的朋友,理论化学家格里菲斯通过计算表明,DNA的4种脱氧核苷酸中,A必须与T成键,G必须与C成键。这与查伽夫法则完成一致。随后,鲍林以前的同事多诺告诉沃森,A-T和G-C配对是靠氢键维系的。以上这些工作,就成了沃森和克里克DNA分子模型中A—T配对、G—C配对结构的基础。
  至此,DNA模型已经浮现。2月28日,沃森用纸板做成4种碱基的模型,将纸板粘到骨架上朝向中心配对,克里克马上指出,只有两条单链的走向相反才能使碱基完善配对,这正好与X光衍射资料一致。完整的DNA分子结构模型完成于1953年3月7日。根据这个模型,DNA分子是一个双螺旋结构,每一个螺旋单位包含10对碱基,长度为34埃(1埃=10-10米)。螺旋直径为20埃。4月15日,沃森和克里克关于该模型的第一篇论文在《自然》(Nature)杂志上发表。
  DNA分子双螺旋结构模型的发现,是生物学史上的一座里程碑,它为DNA复制提供了构型上的解释,使人们对DNA作为基因的物质基础不再怀疑,并且奠定了分子遗传学的基础。DNA双螺旋模型在科学上的影响是深远的。

生物碱(Alkaloid)编辑本段回目录

  为一类含氮的有机化合物,存在于自然界(一般指植物,但有的也存在于动物)。有似碱的性质,所以过去又称为赝碱。大多数生物碱均有复杂的环状结构,氮素多包括在环内,具有光学活性。但也有少数生物碱例外。如麻黄碱是有机胺衍生物,氮原子不在环内;咖啡因虽为含氮的杂环衍生物,但碱性非常弱,或基本上没有碱性;秋水仙碱几乎完全没有碱性,氮原子也不在环内……等。由于它们均来源于植物的含氮有机化合物,而又有明显的生物活性,故仍包括在生物碱的范围内。而有些来源于天然的含氮有机化合物,如某些维生素、氨基酸、肽类,习惯上又不属于“生物碱",所以"生物碱"一词到现在还未有严格而确切的定义。
  已知生物碱种类很多,约在2,000种以上,有一些结构式还没有完全确定。它们结构比较复杂,可分为59种类型。随着新的生物碱的发现,分类也将随之而更新。由于生物碱的种类很多,各具有不同的结构式,因此彼此间的性质会有所差异。但生物碱均为含氮的有机化合物,总有些相似的性质,如:
  1)形态:大多数生物碱是结晶形固体;有些是非结晶形粉末;还有少数在常温时为液体,如烟碱(Nicotine),毒芹碱(Coniine)等。
  生物碱分类
  按照生物碱的基本结构,已可分为60类左右。下面介绍一些主要类型:有机胺类(麻黄碱、益母草碱、秋水仙碱)、吡咯烷类(古豆碱、千里光碱、野百合碱)、吡啶类(菸碱、槟榔碱、半边莲碱)、异喹啉类(小檗碱、吗啡、粉防己碱)、吲哚类(利血平、长春新碱、麦角新碱)、莨菪烷类(阿托品、东莨菪碱)、咪唑类(毛果芸香碱)、喹唑酮类(常山碱)、嘌呤类(咖啡碱、茶碱)、甾体类(茄碱、浙贝母碱、澳洲茄碱)、二萜类(乌头碱、飞燕草碱)、其它类(加兰他敏、雷公藤碱)。
  2) 颜色:一般为无色。只有少数带有颜色,例如小 碱(Berberine)、木兰花碱(Magnoflorine)、蛇根碱(Serpentine)等均为黄色。
  3)味感:不论生物碱本身或其盐类,多具苦味,有些味极苦而辛辣,还有些刺激唇舌的焦灼感。
  4)酸碱反应:大多呈碱性反应。但也有呈中性反应的,如秋水仙碱;也有呈酸性反应的,如茶碱和可可豆碱;也有呈两性反应的,如吗啡(Morphine)和槟榔碱(Arecaadine)。
  5)溶解度:大多数生物碱均几乎不溶或难溶于水。能溶于氯仿、乙醚、酒精、丙酮、苯等有机溶剂。也能溶于稀酸的的水溶液而成盐类。生物碱的盐类大多溶于水。但也有不少例外,如麻黄碱(Ephedrine)可溶于水,也能溶于有机溶剂。又如烟碱、麦角新碱(Ergonovine)等在水中也有较大的溶解度。
  6)旋光性:大多数生物碱含有不对称碳原子,有旋光性,多数呈左旋光性。只有少数生物碱,分子中没有不对称碳原子,如那碎因(Narceine)则无旋光性。还有少数生物碱,如烟碱,北美黄连碱(Hydrastine)等在中性溶液中呈左旋性,在酸性溶液中则变为右旋性。
  7)挥发性:在常压时绝大多数生物碱均无挥发性。直接加热先熔融,继被分解;也可能熔融而同时分解。只有在高度真空下才能因加热而有升华现象。但也有些例外,如麻黄碱,在常压下也有挥发性;咖啡因在常压时加热至180。C以上,即升华而不分解。生物碱大都用于医药治疗及研究。少数品种用于分析[如白路新(Brucine)测定硝酸盐]或作为对比样品。 生物碱一般性质较稳定,在贮存上除避光外,不需特殊贮存保管。
  什么是生物碱?其在植物界的分布规律及在植物体内的存在形式有哪些?
  生物碱是指一类来源于生物界(以植物为主)的含氮有机化合物。多数生物碱分子具有较复杂的环状结构,且氮原子在环状结构内,大多呈碱性,一般具有生物活性。但有些生物碱并不完全符合上述生物碱的含义,如麻黄碱的氮原子不在环内,咖啡不显碱性等。
  分布规律:(1)绝大多数生物碱分布在高等植物,尤其是双子叶植物中,如毛茛科、罂粟科、防己科、茄科、夹竹桃科、芸香科、豆科、小檗科等。(2)极少数生物碱分布在低等植物中。(3)同科同属植物可能含相同结构类型的生物碱。(4)一种植物体内多有数种或数十种生物碱共存,且它们的化学结构有相似之处。
  存在形式:有机酸盐、无机酸盐、游离状态、酯、苷等。
  生物碱的常见结构类型有哪些?
  这一部分内容需要结合后面的重点中药(如麻黄、黄连、洋金花、苦参、汉防己、马钱子、乌头等)中所含的生物碱的结构类型去掌握。重要类型包括:
  吡啶类:主要是喹喏里西啶类(苦参所含生物碱,如苦参碱)。
  莨菪烷类:洋金花所含生物碱,如莨菪碱。
  异喹啉类:主要有苄基异喹啉类(如罂粟碱)、双苄基异喹啉类(汉防己所含生物碱,如汉防己甲素)、原小檗碱类(黄连所含生物碱,如小檗碱)和吗啡类(如吗啡、可待因)。
  吲哚类:主要有色胺吲哚类(如吴茱萸碱)、单萜吲哚类(马钱子所含生物碱,如士的宁)、二聚吲哚类(如长春碱、长春新碱)。
  萜类:乌头所含生物碱(如乌头碱)、紫杉醇。
  甾体:贝母碱
  有机胺类:麻黄所含生物碱,如麻黄碱、伪麻黄碱。
  生物碱的物理性质有哪些?
  这一部分内容需要重点掌握某些生物碱特殊的物理性质,主要包括:
  液体生物碱:烟碱、槟榔碱、毒藜碱。
  具挥发性的生物碱:麻黄碱、伪麻黄碱。
  具升华性的生物碱:咖啡因
  具甜味的生物碱:甜菜碱
  有颜色的生物碱:小檗碱、蛇根碱、小檗红碱。
  另外需注意生物碱的旋光性受多种因素的影响,如溶剂、pH值、生物碱存在状态等。同时生物碱的旋光性影响其生理活性,通常左旋体的生理活性强于右旋体。
  苦参生物碱的结构类型是什么?其理化性质和提取分离方法有哪些?
  (1)结构类型
  苦参所含生物碱主要是苦参碱和氧化苦参碱。此外还含有羟基苦参碱、N-甲基金雀花碱、安那吉碱、巴普叶碱和去氢苦参碱(苦参烯碱)等。这些生物碱都属于喹喏里西啶类衍生物。分子中均有2个氮原子,一个是叔胺氮,一个是酰胺氮。
  (2)理化性质
  碱性:苦参中所含生物碱均有两个氮原子。一个为叔胺氮(N-1),呈碱性;另一个为酰胺氮(N-16),几乎不显碱性,所以它们只相当于一元碱。苦参碱和氧化苦参碱的碱性比较强。
  溶解性:苦参碱的溶解性比较特殊,不同于一般的叔胺碱,它既可溶于水,又能溶于氯仿、乙醚等亲脂性溶剂。氧化苦参碱是苦参碱的氮氧化物,具半极性配位键,其亲水性比苦参碱更强,易溶于水,难溶于乙醚,但可溶于氯仿。
  极性:苦参生物碱的极性大小顺序是:氧化苦参碱>羟基苦参碱>苦参碱。
  (3)提取分离
  苦参以稀酸水渗漉,酸水提取液通过强酸性阳离子交换树脂提取总生物碱。苦参碱和氧化苦参碱的分离,利用二者在乙醚中的溶解度不同进行。
  麻黄生物碱的结构类型是什么?其理化性质、鉴别反应和提取分离方法有哪些?
  (1)结构类型
  麻黄中含有多种生物碱,以麻黄碱和伪麻黄碱为主,其次是甲基麻黄碱、甲基伪麻黄碱和去甲基麻黄碱、去甲基伪麻黄碱。麻黄生物碱分子中的氮原于均在侧链上,属于有机胺类生物碱。麻黄碱和伪麻黄碱属仲胺衍生物,且互为立体异构体,它们的结构区别在于
  Cl的构型不同。
  (2)理化性质
  挥发性:麻黄碱和伪麻黄碱的分子量较小,具有挥发性。
  碱性:麻黄碱和伪麻黄碱为仲胺生物碱,碱性较强。由于伪麻黄碱的共轭酸与
  C2-OH形成分子内氢键稳定性大于麻黄碱,所以伪麻黄碱的碱性强于麻黄碱。
  溶解性:由于麻黄碱和伪麻黄碱的分子较小,其溶解性与一般生物碱不完全相同,既可溶于水,又可溶于氯仿,但伪麻黄碱在水中的溶解度较麻黄碱小。麻黄碱和伪麻黄碱形成盐以后的溶解性能也不完全相同,如草酸麻黄碱难溶于水,而草酸伪麻黄碱易溶于水;盐酸麻黄碱不溶于氯仿,而盐酸伪麻黄碱可溶于氯仿。
  (3)鉴别反应
  麻黄碱和伪麻黄碱不能与大数生物碱沉淀试剂发生反应,但可用下述反应鉴别:
  二硫化碳-硫酸铜反应
  属于仲胺的麻黄碱和伪麻黄碱产生棕色沉淀。属于叔胺的甲基麻黄碱、甲基伪麻黄碱和属于伯胺的去甲基麻黄碱、去甲基伪麻黄碱不反应。
  铜络盐反应 麻黄碱和伪麻黄碱的水溶液加硫酸铜、氢氧化钠,溶液呈蓝紫色。
  (4)提取分离
  溶剂法:利用麻黄碱和伪麻黄碱既能溶于水,又能溶于亲脂性有机溶剂的性质,以及麻黄碱草酸盐比伪麻黄碱草酸盐在水中溶解度小的差异,使两者得以分离。方法为麻黄用水提取,水提取液碱化后用甲苯萃取,甲苯萃取液流经草酸溶液,由于麻黄碱草酸盐在水中溶解度较小而结晶析出,而伪麻黄碱草酸盐留在母液中。
  水蒸汽蒸馏法:麻黄碱和伪麻黄碱在游离状态时具有挥发性,可用水蒸汽蒸馏法从麻黄中提取。
  离子交换树脂法:利用生物碱盐能够交换到强酸型阳离子交换树脂柱上,而麻黄碱的碱性较伪麻黄碱弱,先从树脂柱上洗脱下来,从而使两者达到分离。
  生物碱类药物(重点在鉴别,N的位置,有哪些电效应)
  苯烃胺类(盐酸麻黄碱和盐酸伪麻黄碱)
  氮原子在侧链上,碱性较一般生物碱强,易与酸成盐。
  托烷类(硫酸阿托品和氢溴酸山莨菪碱)
  阿托品和山莨菪碱是由托烷衍生的醇(莨菪醇)和莨菪酸缩合而成,具有酯结构。分子结构中,氮原子位于五元酯环上,故碱性也较强,易与酸成盐。
  喹啉类(硫酸奎宁和硫酸奎尼丁)
  奎宁和奎尼丁为喹啉衍生物,其结构分为喹啉环和喹啉碱两个部分,各含一个氮原子,喹啉环含芳香族氮,碱性较弱;喹啉碱微脂环氮,碱性强。
  异喹啉类(盐酸吗啡和磷酸可待因)
  吗啡分子中含有酚羟基和叔胺基团,故属两性化合物,但碱性略强;可待因分子中无酚羟基,仅存在叔胺基团,碱性较吗啡强。
  吲哚类(硝酸士的宁和利血平)
  士的宁和利血平分子中含有两个碱性强弱不同的氮原子,N1处于脂肪族碳链上,碱性较N2强,故士的宁碱基与一分子硝酸成盐。
  黄嘌呤类(咖啡因和茶碱)
  咖啡因和茶碱分子结构中含有四和氮原子,但受邻位羰基吸电子的影响,碱性弱,不易与酸结合成盐,其游离碱即供药用。
  鉴别试验:特征鉴别反应。
  1.双缩脲反应系芳环侧链具有氨基醇结构的特征反应。
  盐酸麻黄碱和伪麻黄碱在碱性溶液中与硫酸铜反应,Cu2+与仲胺基形成紫堇色配位化合物,加入乙醚后,无水铜配位化合物及其有2 个结晶水的铜配位化合物进入醚层,呈紫红色,具有4个结晶水的铜配位化合物则溶于水层呈蓝色。
  2.Vitali反应系托烷生物碱的特征反应。
  硫酸阿托品和氢溴酸山莨菪碱等托烷类药物均显莨菪酸结构反应,与发烟硝酸共热,即得黄色的三硝基(或二硝基)衍生物,冷后,加醇制氢氧化钾少许,即显深紫色。
  3.绿奎宁反应系含氧喹啉(喹啉环上含氧)衍生物的特征反应硫酸奎宁和硫酸奎尼丁都显绿奎宁反应,在药物微酸性水溶液中,滴加微过量的溴水或氯水,再加入过量的氨水溶液,即显翠绿色。
  4.Marquis反应系吗啡生物碱的特征反应。
  取得盐酸吗啡,加甲醛试液,即显紫堇色。灵敏度为0.05μg. 5.Frohde反应系吗啡生物碱的特征反应。
  盐酸吗啡加钼硫酸试液0.5ml,即显紫色,继变为蓝色,最后变为棕绿色。灵敏度为0.05μg. 6.官能团反应系吲哚生物碱的特征反应。
  利血平结构中吲哚环上的β位氢原子较活泼,能与芳醛缩合显色。
  与香草醛反应。利血平与香草醛试液反应,显玫瑰红色。
  与对-二甲氨基苯甲醛反应。利血平加对-二氨基苯甲醛,冰醋酸与硫酸,显绿色,再加冰醋酸,转变为红色。
  5.紫脲酸反应系黄嘌呤类生物碱的特征反应。
  咖啡因和茶碱中加盐酸与氯酸钾,在水浴上蒸干,遇氨气即生成四甲基紫脲酸铵,显紫色,加氢氧化钠试液,紫色即消失。
  6.还原反应系盐酸吗啡与磷酸可待因的区分反应。
  吗啡具弱还原性。本品水溶液加稀铁氰化钾试液,吗啡被氧化生成伪吗啡,而铁氰化钾被还原为亚铁氰化钾,再与试液中的三氯化铁反应生成普鲁士蓝。
  可待因无还原性,不能还原铁氰化钾,故此反应为吗啡与磷酸可待因的区分反应。
  特殊杂质检查:
  利用药物和杂质在物理性质上的差异。
  硫酸奎宁中“氯仿-乙醇中不溶物”的检查盐酸吗啡中“其它生物碱”的检查旋光性的差异:用于硫酸阿托品中“莨菪碱”的检查对光选择性吸收的差异:利血平生产或储存过程中,光照和有氧存在下均易氧化变质,氧化产物发出荧光。因此规定:供试品置紫外光灯(365nm)下检视,不得显明显荧光。
  吸附性质的差异:硫酸奎宁制备过程中可能存在“其它金鸡纳碱”。利用吸附性质的差异,采用硅胶G薄层进行检查。规定限度为0.5%.利用药物和杂质和化学性质上的差异。
  与一定试剂反应产生沉淀硫酸阿托品制备过程中可能带入(如莨菪碱、颠茄碱)杂质,因此需要检查“其它生物碱”。利用其它生物碱碱性弱于阿托品的性质,取供试品的盐酸水溶液,加入氨试液,立即游离,发生浑浊。规定0.25g药物中不得发生浑浊。
  与一定试剂产生颜色反应① 盐酸吗啡中阿扑吗啡的检查② 盐酸吗啡中罂粟碱的检查③ 磷酸可待因中吗啡的检查④ 硝酸士的宁中马钱子碱的检查含量测定非水溶液滴定法:
  生物碱类药物一般具有弱碱性,通常可在冰醋酸或醋酐等酸性溶液中,用高氯酸滴定液直接滴定,以指示剂或电位法确定终点。
  ⑴氢卤酸盐的滴定在滴定生物碱的氢卤酸盐时,一般均预先在冰醋酸中加入醋酸汞的冰醋酸溶液,使氢卤酸生成在冰醋酸中难解离的卤化汞,从而消除氢卤酸对滴定反应的不良影响。
  加入的醋酸汞量不足时,可影响滴定终点而使结果偏低,过量的醋酸汞(理论量的1~3倍)并不影响测定的结果。
  ⑵硫酸盐的测定硫酸为二元酸,在水溶液中能完成二级电离,生成SO42-,但在冰醋酸介质中,只能离解为HSO4-,不再发生二级离解。因此,生物碱的硫酸盐,在冰醋酸的介质中只能被滴定至生物碱的硫酸氢盐。
  硫酸阿托品的含量测定。溶剂:冰醋酸和醋酐,指示剂:结晶紫,滴定液:高氯酸。至溶液显纯蓝色。
  硫酸奎宁的含量测定。1摩尔的硫酸奎宁可消耗3摩尔的高氯酸。
  硫酸奎宁片的含量测定。硫酸奎宁经强碱溶液碱化,生成奎宁游离碱,在与高氯酸反应,因此1摩尔的硫酸奎宁可消耗4摩尔的高氯酸。
  ⑶硝酸盐的测定:
  硝酸在冰醋酸介质中虽为弱酸,但是他具有氧化性,可以使指示剂变色,所有采用非水溶液滴定法测定生物碱硝酸盐时,一般不用指示剂而用电位法指示终点。
  如硝酸士的宁。
  ⑷磷酸盐的测定:
  磷酸在冰醋酸介质中的酸性极弱,不影响滴定反应的定量完成,可按常法测定。
  磷酸可待因。
  提取中和法提取中和法是根据生物碱盐类能溶于水而生物碱不溶于水的特性,可以采用有机溶剂提取后测定。
  碱化、提取、滴定。按下列任何一种方法处理后测定:
  ① 将有机溶剂蒸干,于残渣中加定量过量的酸滴定液使溶解,再用碱滴定液回滴剩余的酸;若生物碱易挥发或分解,应在蒸至近干时,先加入酸滴定液“固定”生物碱,再继续加热除去残余的有机溶剂,放冷后完成滴定。
  ② 将有机溶剂蒸干,于残渣中加少量中性乙醇使溶解,任何用酸滴定液直接滴定。
  ③ 不蒸去有机溶剂,而直接于其中加定量过量的酸滴定液,振摇,将生物碱转提入酸液中,分出酸液置另一锥形瓶中,有机溶剂层再用水分次振摇提取,合并水提取液和酸液,最后用碱滴定液回滴定。
  测定条件的选择能使生物碱游离的碱化试剂有氨水、碳酸钠、碳酸氢钠、氢氧化钠、氢氧化钙和氧化镁等。但强碱不适用于下列生物碱类药物的游离:
  ① 含酯结构的药物,如阿托品和利血平等,与强碱接触,易引起分解。
  ② 含酚结构的药物,如吗啡,可与强碱形成酚盐而溶于水,难以被有机溶剂提取。
  ③ 含脂肪性共存物的药物,当有脂肪性物质与生物碱共存时,碱化后易发生乳化,使提取不完全。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇分子 下一篇蛋白质

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
1

收藏到:  

词条信息

紫云英
紫云英
举人
词条创建者 发短消息   

相关词条